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physics and biology

length and time scales
independence of scales
feedback between scales
equilibrium

demographics

emergence of complexity

active dynamics

that which is optimised

heterogeneity

T. ). Newman, Physical Biology 2011 8 010201
Life and death in biophysics

Monday, 9 January 2012



Regulation and emergence
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Laws of physics hold in biology

Optimist Pessimist
“Let’s get to work” Yes, but ...
Write down Newton’s laws of motion Cell is not a mechanical device
Stress/strain relationships for tissues Tissue/tumour is an assembly of cells
Energy of a tissue, energy of a tumouir, ... Therefore tissue is not a mechanical entity
l.e. it is not a “material”

Free energy, if fluctuations are not small

Cells do not just “react” to forces (passive)
Minimize, diagonalize, ... they “behave” in response to forces (active)

Pragmatist

It depends on time scales: short times (< 1-10s) cells react, longer times (> 10s) cell behave
The challenge in both experiments and theory is to extend physics tools to describe behaviour

Biologists call the corresponding biological challenge “systems biology”
understanding interaction of gene/signalling networks which drive cell behaviour
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Length scales in modelling multicellular systems
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Computation - Subcellular Element Model

vi nter

Each cell represented as a cluster of viscoelastically coupled nodes
Overdamped dynamics described by set of Langevin equations
Couplings are defined by short-range potentials

Algorithms are grid-free, and intrinsically three-dimensional
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Computation - Subcellular Element Model

vi nter

Modeling multicellular systems using subcellular elements
T. ). Newman, Mathematical Biosciences and Engineering 2,611 (2005)

Modeling cell rheology with the Subcellular Element Model
S.A. Sandersius and T. J. Newman, Physical Biology 5,#015002 (2008)
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ScEM - single cell

11
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ScEM - cell growth and successive divisions
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ScEM - growth and division leads to large 3D cell mass
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ScEM - cross-sectional view shows adaptive cell shapes
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Biophysical calibration
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Local (micro) rheology

Entangled F-actin solutions, no associated proteins
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“Rheology of actin networks is governed by the entropic dynamics of their semiflexible polymer chains. In living cells this behaviour is

observed only over short time scales (<0.01s), whereas mechanical cellular functions operate at much longer time scales. Over longer
time scales, rheological behaviour of cells scales with a weak power law.”

Uhde J, Ter-Oganessian N, Pink DA, Sackmann E, Boulbitch A. 2005. Phys. Rev. E 72, 061916.
Deng L, Trepat X, Butler JP, Millet E, Morgan KG, Weitz DA, Fredberg JJ. 2006. Nat Mater. 5(8):597-598.
Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R, Navajas D. 2003. Biophys J. 84(3): 2071-2079.
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Micro-rheology of a single cell using the SCEM
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Modelling cell rheology with the

Subcellular Element Model
S A Sandersius, T J Newman 2008 Physical
Biology 5 015002
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Active processes in cell and tissues
Examples:

active cytoskeletal rearrangement to survive large shear forces
and drive gross morphological changes - at cell scale

effective tissue viscosity (relevant to embryonic tissue)

generation of pseudopodia for migration through connective
tissue, or even epithelial-like tissue
(leading to interesting movement patterns)

We incorporate active processes into the SCcEM by
“fading in” and “fading out” subcellular elements.

This is essentially a phenomenological model of cytoskeletal
construction and deconstruction. We use biologically plausible
time scales for this process (~10 cubic microns/sec).

Monday, 9 January 2012
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Slow cell stretching and cytoskeletal adaptation

19

Monday, 9 January 2012



“Tissue viscosity”

Forcing a 60 micron bead through planar tissue enables a
measurement of effective tissue viscosity

We find effective viscosity of order 10* Pa s
which is in line with measurements on
various embryonic systems

Gordon et al 1972 (chick heart)
Rieu et al 2002 (Hydra)
Schoetz et al 2007 (zebrafish)
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Emergent cell and tissue dynamics from subcellular modelling of active biomechanical processes
S A Sandersius, C J Weijer, T J Newman 2011 Physical Biology 8 045007.
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Streaming morphologies in tissue invasion
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Primitive streak formation in the developing avian

i

from Wolpert et al (OUP)
G

Stage 14 (22 somites)
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Movement patterns during streak formation
the enduring search for a mechanism

Chuai M, Zeng W, Yang X, Boychenko V, Glazier JA,Weijer CJ] 2006 Developmental Biology 296 137-149
Cell movement during primitive streak formation

Voiculescu O, Bertocchini FWolpert L, Keller RE, Stern CD 2007 Nature 449 1049-1052
The amniote primitive streak is defined by epithelial cell intercalation before gastrulation

Zamir EA, Rongish BJ, Little CD 2008 PLoS Biology 6 2163-2171
The ECM moves during primitive streak formation - computation of ECM versus cellular motion

Newman T] 2008 Current Topics in Developmental Biology 81 157-182
Grid-free models of multicellular systems, with an application to large-scale vortices accompanying primitive streak formation
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Movement patterns during avian gastrulation
the “chemotactic dipole™

In the steady-state, the equation
T governing the diffusion of chemical

signals is: DV -hp =87 (x-x,)

This is mathematically analogous to
Poisson’s equation of electrostatics

Al

The chemotactic velocity v ~ V@
is analogous to the electric field

Sources of chemoattractant (repellent) are
analogous to negative (positive) charges

This analogy allows the simple
construction of a “chemotactic dipole”
which gives flow patterns similar to
those observed in the chick embryo.

Source of Source of
chemoattractant chemorepellent
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Movement patterns during avian gastrulation
brimitive simulations using elastic spheres

strong chemotaxis weak chemotaxis

Produces encouraging movement patterns, but cell flow almost non-existent - due to jamming
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Movement patterns during avian gastrulation
ScEM simulation of streak formation

Simulations are performed on a scaled-down
system of 1200 cells

Simulation parameters (both for mechanotaxis
and chemotaxis) are calibrated at the cell scale
(I-10 microns, |1-10 seconds).

Anterior of streak moves ~300 microns in
2 hours, which is consistent with experiment
(~1200 microns in 8 hours)

Model, calibrated at the cell scale, provides
results at the tissue scale, in qualitative and
quantitative agreement with experiment

But, dipole mechanism is only robust to ~10%
deviation in chemoattractant/repellent
parameters (if dipole comprises ~200 cells)
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S A Sandersius, M Chuai, C J Weijer, T J Newman 2011 Physical Biology 8 045008.
“Chemotactic dipole” mechanism for large-scale vortex motion during primitive streak formation in the chick embryo
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Summary

Contrasted physics and biology
Presented Subcellular Element Model (ScEM)
Calibration of model from biophysical data
Discussed need for models to incorporate active processes
Examples given:
slow cell stretching
tissue fluidity

invasion morphologies
primitive streak formation
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