3D Cell Culturing by Magnetic Levitation, The Next Generation of Cell Culturing?

Presented in the Embryo Physics Course February 8, 2012 By Glauco R. Souza gsouza@n3dbio.com Nano3D Biosciences[™], Inc. Houston, Texas, USA ¹

3D Cell Culturing by Magnetic Levitation, The Next Generation of Cell Culturing? Glauco R. Souza, Ph.D. Chief Scientific Officer Nano3D Biosciences[™], Inc. gsouza@n3dbio.com

What is Cell Culture?

What is Cell Culture?

Outside the body

in vivo: Inside the body

http://www.ptei.org/assets/HistoryofTissues.jpg http://www.freewebs.com/bnip1/segmentation.htm http://universe-review.ca/I10-35-organs.jpg

Why 3D Cell Culturing?

Paradigm Shift

 Culturing cells remains essential to all work in life sciences.

 Now widely recognized that cells grown in 2D inaccurately represents real tissue.

Start of the 3D Wave

"Development of complex 3D tissue models will revolutionize the study of human responses..."

- The National Institute of Health

Today's 3D Cell Culturing?

Today's 3D Cell Culturing

- Gel, such as Matrigel
- Rotary Bioreactor
- Polymer Scaffolds

Gel and Matrigel

- +Today's gold standard
- + Extensive body of literature
- Often harvested from animals rats
- Exogenous extracellular matrix proteins no translational application
- Batch-to-batch variability
- Laborious
- Poor co-culturing capability
- Difficult to handle cells post-culture

Rotary Bioreactors

- + Cell expansion
- Mimics microgravity
- + In vivo traits
- Difficult to visualize live cultures
- Excess components
- Not compatible with high-throughput
- Poor co-culturing capability
- No spatial control of cells
- Poor co-culturing capability
- Difficult to handle cells postculture

Polymeric Scaffolds

+Compatible with high-throughput

- + Porous polymers
- + Diffusion of nutrients
- Poor cell-cell interaction artificial cell migration
- Poor co-culturing capability
- Difficult visualization
- Poor translational applications

Next Generation?

Next Generation: Magnetic Levitation?

The Genesis Multidisciplinary Collaboration

Spin off from Rice and MD Anderson

"Develop the Bio-Assembler™ into the industry leading standard for 3D in vitro cell culturing and to apply this breakthrough technology in the fields of toxicology screening, drug discovery, and regenerative medicine."

n3D

- Glauco R. Souza, Ph.D. (Physical Chemist, CSO)
- David Lee (**Business**, President)

Rice University

- Thomas Killian, Ph.D. Professor of **Physics** and Astronomy (coinventor)
- Robert Raphael, Ph.D. Professor of **Bioengineering** (co-inventor)

Nanoparticle Assembly: Nanoshuttles (NS)

How?

We "decorate" cells with magnetic nanoparticles

Souza et al. Nature Nanotechnol. April 2010

Magnetic Levitation

3D Structure SEM – 24 hours vs. 8 days GBM Cell Cultures

24 hours

Souza et al. Nature Nanotechnol. April 2010

Bio-Assembler[™] Kit

NS

Single-Well Bio-

6-Well Bio-Assembler

24-Well Bio-Assembler

What about *in vivo* like?

In Vivo like *In Vitro* Mouse Brain Xenograft Comparison - Glioblastoma

Souza et al. Nature Nanotechnol. April 2010

Shape but Scaffoldless: The New Paradigm

Levitated Magnetic Pattern

New paradigm Scaffoldless tissue engineering with shape

Co-Culture, Spatial Control, Invasion Assay

Invasion Assay & Co-Culture Magnetic Guidance = Control

t = 0

Normal Human Astrocyte mCherry fluorescence

Human Glioblastoma GFP fluorescence

Souza et al. Nature Nanotechnol. April 2010

Invasion Assay & Co-Culture Magnetic Guidance = Control

Souza *et al.* Nature Nanotechnol. April 2010 Molina *et al.* Neoplasia, May 2010 (Scale bar, 200 µm.)

What About the Nanoparticles?

TEM

SEM & TEM - 1 day = Intracellular NP 8 days = Extracellular NP

24 hours

8 days

TEM of Cells Closer to the Edge

24 hours

8 days

GS-0003.tif 08-647 1) 24hr GBM Print Mag: 2570x @7.0 in 8:39 11/20/08 Microscopist: Kenn Dunner Jr

10 microns HV=80kV Direct Mag: 2000x AMT Camera System

GS-0052.tif 08-648 2)8days GBM Print Mag: 2570x @ 7.0 in 9:34 11/20/08 Microscopist: Kenn Dunner Jr

10 microns HV=80kV Direct Mag: 2000x AMT Camera System

Nanoshuttles

- All components of the reagent mix are individually **FDA**.
- Nanoshuttle was tested in mice and **no acute toxicity was found**.
- Over 20 different cells types have been cultured with the Bio-Assembler, including primary cells
- We have **not found a cell type that did not culture** in the Bio-Assembler.
- Healthy cell cultures have been maintained for as long as 2 months. They
 were terminated at the end of experiment.
- Comparative Genome hybridization (CGH) profile was comparable between Nanoshuttle treated and non-treated human primary cells, indicating that the nanoparticles do not cause any genomic instability.
- No difference in viability and proliferation between cells in 2D treated and not-treated with Nanoshutlle
- Western blotting showed no difference in gene expression between primary cells treated and not-treated with Nanoshutlle cultured in 2D: fibronectin, laminin, N-Cadherin, E-Cadherin, smooth muscle α-actin

Step-by-Step

As Simple As 2D

Preparing Neural Stem Cells for Magnetic Levitation

Add Nanoshuttle to media & cells

Trypsinize cells

Add & Incubate
Neural Stem cells with Nanoshuttle

First

Step

Souza et al. Nature Nanotechnol. April 2010

Levitating Cells

15 minutes

Levitated NSC

12 hours

3D NSC Culture

*NSC = Neural Stem cells

Tuning the Culture

Levitation Time

24 hours

200k

48 hours

880k

Number of Cells – 24 hours 400k

Hepatoma

Human Mesenchymal Stem Cells

100k cells

200k cells

Number of Cells – Human Primary Pulmonary Fibroblast

Biosciences, Inc.

6-Well Bio-AssemblerTM

*Submitted for Publication

Lung Primary Cells

Human Lung Primary Cells

Epithelial

Smooth Muscle

Endothelial

Fibroblast

Primary Pulmonary Fibroblasts

Human Umbilical Vein Cells HUVEC

HUVEC – Macrostructure

*48 hour culture

HUVEC - Microstructure

Rapid 3D Formation by Promoting Cell-Cell Interaction

HUVEC 1 & 4 Hours Culture

60 minutes levitation

4 hours levitation

4 Hours of Levitation – Primary Cells

Fibroblast

Epithelial

Extracellular Matrix:Laminin Immunohistochemistry

Stem Cells - Dental Pulp

Cells from Dental Pulp

Day 1

Day 2

In collaboration with Dr. Dozortsev, Director of Advanced Fertility Center of Texas

Stem Cells from Dental Pulp Immunohistochemistry

Vimentin

Stro-1

*Negative Controls – secondary only

H&E

Stem Cells – Adipose Derived

Co-Culturing Endothelial (GFP) and Fibroblast

Adiposphere organoid composed of differentiated 3T3-L1 in co-culture with bEND.3-GFP

Day 14 after induction of adipogenesis

bEND.3-GFP endothelial cells formed microvessels within the adiposphere. Larger lipid droplet formations are also observed.

Levitated Cell Types

Human Primary Cells

- Pulmonary Fibroblast
- Pulmonary Endothelial & HUVEC
- Small Air Way Epithelial
- Tracheal Smooth muscle
- Mesenchymal Stem Cells
- Dental Pulp Stem Cells
- Murine Adipose Tissue
- Bone Marrow Endothelial
- Heart Valve endothelial

- Human Mammary Epithelial MCF10A
- Pre-adipocytes Fibroblasts
- Adipocytes
- Neural Stem Cells
- HEK 293
- Melanoma
- Astrocytes
- Glioblastomas
- T-Cells and Antigen Presenting Cells
- Chondrocytes

New Tool 3D Wound Healing Assay

2D Scratch Assay Today's *In Vitro* Wound healing Model

- 2D culture
- Poor cell-cell interaction representation
- Interaction of cells with plastic or coated surface = NOT in vivo like
- Difficult to co-culture different cell types
- No "wound" contraction

Liang et al., Nature Protocols, 1 March 2007

New Tool 3D Wound Healing Assay

6-Well Bio-AssemblerTM

*Submitted for Publication

Puncturing Wound

*Submitted for Publication

HEK293 Wound Healing vs. Ibuprofen Concentration

12

3D Wound Healing Assay by Co-Culturing Primary Cells

Biosciences, Inc.

Magnetic Printing Method

Average Area of opening = $1.18 \pm 0.18 \text{ mm}^2$

Future Tools

Tissue Layering with The Magnetic Pen

24- & 96-Well Plates

Magnetic Pen

Layered Co-Culture

*In collaboration with **Dr. Jane Grande-Allen** – Rice Bioengineering

Layered Co-Culture Four Primary Cell Types

*In collaboration with Dr. Jane Grande-Allen – Rice Bioengineering

Immunohistochemistry of Four Cell Types Layered Co-Culture

Antigen	Purpose
CD31	PEC phenotypic markers
Von Willebrand's factor (vwf)	
Smooth muscle a-actin (SMaA)	SMC phenotypic markers

Fibronectin (FN)	HPF phenotypic marker	
Vimentin (VM)	EpiC phenotypic marker	
Collagen I (Col I)	Extracellular matrix	
Laminin (Lam)	components	

*In collaboration with **Dr. Jane Grande-Allen** – Rice Bioengineering

"Viability" Assay

Traditional *In Vitro* Cell Viability Testing A Challenge in 3D Cell Culturing

- Metabolic assays MTT
 - Poor permeability through 3D culture
 - underestimate cell viability
- DNA content picoGreen
 - Challenging to extract DNA requires extensive cell manipulation
 - underestimate cell viability
- Cell counting
 - Requires dispersing cells by enzimatic digestion which compromises cell viability
 - underestimate cell viability
- Poor correlation with side-by-side 2D results

Pre-Cancer more resistant to Doxorubicin Chemotherapy

*Li et al. J. Pharmacol. Exp. Ther. 2010, 332, 821-8.

*Li et al. J. Pharmacol. Exp. Ther. 2010, 332, 821-8.

2D

3 days

5

HEK 293 at 4x Magnification

LNCaP – siRNA Treated

siRNA Treated

Control

Df = 1.7

Df = 1.9

The Next Generation! Needed Research & Operational Impact

- Rapid formation of 3D in vivo-like multicellular structures
- Promote cell-cell interaction
- Co-Culturing capability
- Easy to handle, pre- and post- culture
- Compatible with standard diagnostics
- Fast set-up time, as simple as 2D
- Minimum deviation from general protocols

Publication and Media

GALLERIES /// VIDEOS /// COLUMNS	User Name	Passw	rord 🛛	DGIN Forgotten y
Metal Nano-Particles Suspend H		netic gineering iotechnology ws		c cell le
Cells In Magnetic Scatfolding For Easy Organ Manufacturing By Stuart Fox Posted 03.16.2010 at 12:44 pm 🗐 9 Comments	Business VS GENconnect Blog	Drug Discovery	OMICS	y of coaxi Best of the W
While scientists have become rather adept at transforming generic skin cells into spe organ cells, crafting the organs themselves has proven far more difficult. Since the 3- architecture of most organs is as important to their function as their cellular makeup, cultures are not very useful for building a replacement heart from scratch. To solve thissed Oppor most organ makers create a scaffolding for the cells to grow on.	tech Candustry un liobal tis to 3-D C(the right i	NewSo	Depth Articles Blog	Health 15 Opinion Vid
Too Much For a team of researchers at Rice University, even a biodegradable scaffolding wasn't good enough. By injecting cells with a metallic gel, the researchers have succeeded in suspending cultured cells in a three-dimensional magnetic field . With this magnetic scaffolding, organs can be grown in the right shape, and with no foreign material.	Subscribe About BioTec Advertise	SPACE TECH	ENVIRONMENT News	HEALTH L
The researchers used bacteriophages, special viruses that inject themselves into cells to insert a poly the o scie And 2-D		Levitate can	cer cells for ra	apid 3D tiss y vic Guide

100

lab - and produce replaceme

balls into shapes that resemb

Acknowledgements

Rice University

Tom Killian Robert Raphael Jane Grande-Allen Rebecca Richards-Kortum Veronica Leautaud Hubert Tseng Tom Kraft

Tom Kraft Deborah Mansfield

Fertility Center of Texas Dmitri Dozortsev **University of Texas**

Misha Kolonin Richard Clark Jacqueline Hatch Joe Alcorn

BMC Robert Moore Jeanne Becker

LIFE SCIENCE TECHNOLOGY COMPANY

The George Washington University J. Houston Miller

MD Anderson Cancer Center

Wadih Arap Maria Georgescu Jami Mandelin Jennifer Molina Renata Pasqualini

n3D

Carly Filgueira Dave Lee Christopher Bertucci David Sing

Funding:

Glauco R. Souza, Ph.D. Chief Scientific Officer Nano3D Biosciences[™], Inc.

www.n3Dbio.com gsouza@n3dbio.com

