
Does Entropy Play a Role in Biology?

Evgenii Rudnyi CADFEM GmbH Rosenheim, Germany http://blog.rudnyi.ru, <u>evgenii@rudnyi.ru</u>

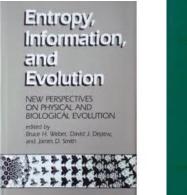
Embryo Physics Course, April 3, 2013

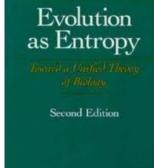
1

Does Entropy Play a Role in Biology?

Evgenii Rudnyi, Embryo Physics Course

3 April 2013

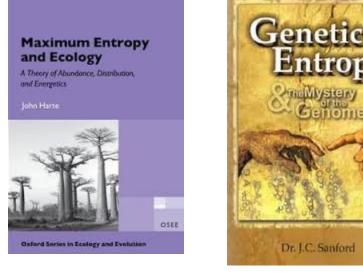

http://blog.rudnyi.ru, evgenii@rudnyi.ru


Introduction

- I used to be a thermodynamicist:
 - http://evgenii.rudnyi.ru/publications.html
 - Practical applications of entropy in chemical thermodynamics

Biology:

- Entropy is related to information
- Entropy is related to evolution



Daniel R. Brooks and E. O. Wiley

The entropy as I know it is different from entropy in biology.

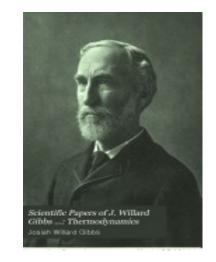
Outline

- Short introduction to entropy in (chemical) thermodynamics
 - Practical science to solve practical problems
- Entropy and information
- Entropy and evolution

Δ

Does Thermodynamics have Foundations?

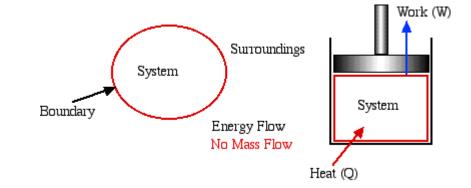
- See for example MIT's Teaching the Second Law
 - http://video.mit.edu/watch/teaching-the-second-law-9283/


It would be a bad idea to start learning thermodynamics by discussing its foundations.

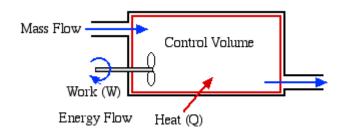
Where to Start

Peter Atkins, Physical Chemistry

PART	1	Equilibrium	17
	1	The properties of gases	19
		Mathematical background 1: Differentiation and integration	42
	2	The First Law	44
		Mathematical background 2: Multivariate calculus	91
	3	The Second Law	94
	4	Physical transformations of pure substances	135
	5	Simple mixtures	156
	6	Chemical equilibrium	209
PART	2	Structure	247
	7	Quantum theory: introduction and principles	249
		Mathematical background 3: Complex numbers	286
	8	Quantum theory: techniques and applications	288
		Mathematical background 4: Differential equations	322
	9	Atomic structure and spectra	324
		Mathematical background 5: Vectors	368
	10	Molecular structure	371
		Mathematical background 6: Matrices	414
	11	Molecular symmetry	417
	12	Molecular spectroscopy 1: rotational and vibrational spectra	445
1	13	Molecular spectroscopy 2: electronic transitions	489
. 2	14	Molecular spectroscopy 3: magnetic resonance	520
	15	Statistical thermodynamics 1: the concepts	564
	16	Statistical thermodynamics 2: applications	592


Josiah Willard Gibbs "On the Equilibrium of Heterogeneous Substances" 1875–1878

IMPORTANT: First learn classical thermodynamics


Thermodynamic System

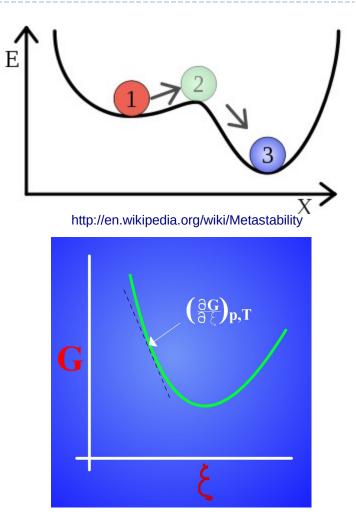
- Isolated system
- Closed system
- Open system

- There is no "just entropy"
- Entropy must be of something

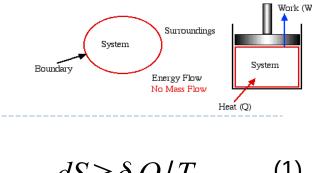
http://www.ohio.edu/mechanical/thermo/Intro/Chapt.1_6/Chapter1.html

Typical Fallacy in Biology

- E. Calvin Beisner, Mutation Fixation: A Dead End for Macro-evolution: http://www.icr.org/article/270/
 - "and that the idea of their improving rather than harming organisms is contrary to the Second Law of Thermodynamics, which tells us that matter and energy naturally tend toward greater randomness rather than greater order and complexity."
- Potential meaning: the entropy of an isolated system is maximal at equilibrium?
 - The Earth (biosphere) is not an isolated system though.


Equilibrium

- Zeroth Law of Thermodynamics:
 - Two systems in equilibrium have the same temperature
- Thermodynamics goal: equilibrium criterion
 - Computing equilibrium composition


- Thermostatics or thermodynamics?
- Thermodynamics does not replace kinetics
 - There is no explicit time in thermodynamics
 - Time could be implicit though
 - Local equilibrium

Stable, Metastable and Frozen Equilibrium

- Nonequilibrium state
 - Thermodynamics can deal with it as well
- Example: $N_2 + 3H_2 = 2NH_3$
 - Consider the mixture with and without a catalyst
 - Frozen equilibrium

http://www.unomaha.edu/tiskochem/Flash_Files/Gibbs.swf

Function of State: Physics

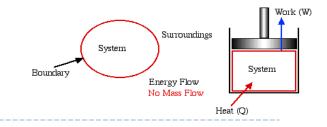
- The First Law
- The Second Law

$$dU = \delta Q - \delta W \qquad dS \ge \delta Q/T \qquad (1)$$

b

a

- Does not depend on path
- Function of Change
 - Depends on path
- The way to proceed:
 We do not need inequality in this equation.


$$\int_{a}^{b} \delta Q = Q$$
 (3)

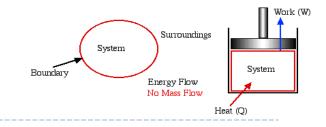
$$dU = TdS - pdV \tag{4}$$

U(S,V) T(S,V) p(S,V)

Function of State: Mathematics

- A closed system at equilibrium:
 - two independent variables.
- Chemists' choice:
 - temperature and pressure.
- There are other options:
 - There are many equations.

G = U - TS + pvdG = -SdT + Vdp $U(T, p) \quad G(T, p)$ $S(T, p) \quad V(T, p)$


$$\begin{pmatrix} -\frac{\partial U}{\partial V} \end{pmatrix}_{T} = T \begin{pmatrix} \frac{\partial p}{\partial T} \end{pmatrix}_{V} - p$$

$$\begin{pmatrix} -\frac{\partial C}{\partial p} p \end{pmatrix}_{T} = -T \begin{pmatrix} \frac{\partial^{2} V}{\partial T^{2}} \end{pmatrix}_{p}$$

$$C_{p} - C_{V} = T \begin{pmatrix} -\frac{\partial p}{\partial T} \end{pmatrix}_{V} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{p}$$

Function of State: Mathematics

- A closed system at equilibrium:
 - two independent variables.
- Chemists' choice:
 - temperature and pressure.
- There are other options:
 - There are many equations.

G = U - TS + pvdG = -SdT + Vdp $U(T, p) \quad G(T, p)$ $S(T, p) \quad V(T, p)$

$$\begin{pmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_{T} = T \begin{pmatrix} \frac{\partial p}{\partial T} \end{pmatrix}_{V} - p$$

$$\begin{pmatrix} \frac{\partial C}{\partial p} p \end{pmatrix}_{T} = -T \begin{pmatrix} \frac{\partial^{2} V}{\partial T^{2}} \end{pmatrix}_{p}$$

$$C_{p} - C_{V} = T \begin{pmatrix} \frac{\partial p}{\partial T} \end{pmatrix}_{V} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{p}$$

Experimental Thermodynamics

- The Third Law
 - Entropy is absolute
- Enthalpy (internal energy)
 - Only change can be measured;
 - Enthalpy of formation
- JANAF Thermochemical Tables (Joint Army-Naval-Air Force Thermochemical Tables)

Journal of Physical and Chemical Reference Data

Monograph No. 9

NIST-JANAF Thermochemical Tables Fourth Edition Part I, Al-Co

Malcolm W. Chase, Jr.

National Institute of Standards and Technology Gaithersburg, Maryland 20899-0001

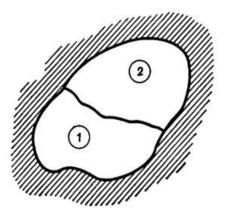
Chloroborane (BCI)

B1CI1(g)

nthalpy R	deference To	emperature _J·K ⁻¹ mol ⁻	= T _r = 298.15 K	<u>د</u>	Standard Stat	e Pressure =	p° = 0.1 MP
<i>т/</i> К	C;	S° -[G	°-H°(T,)]/T	$H^\circ - H^\circ(T_t)$	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\mathbf{f}}G^{\circ}$	log Kr
0	0.	0.	INFINITE	-8,862	138,362	138.362	INFINITE
100	29.117	180,668	240.206	-5.954	139,790	131.204	-68.534
200	29.874	200,994	216.081	-3.017	140,875	122.156	-31.904
250	30,748	207.751	213,761	-1.502	141.209	117.435	-24.537
298.15	31.659	213.245	213.245	0,	141.419	112,835	-19.768
300	31,693	213,441	213.245	0.059	141.425	112.658	-19.615
350	32.572	218,394	213.635	1,666	141.546	107.852	-16,096
400	33,335	222.794	214,510	3.314	141.583	103.036	-13.455
450	33,976	226,759	215.654	4.997	141,551	98.219	-11.401
500	34.510	230.367	216.948	6.710	141.462	93,408	-9.758
600	35,322	236.735	219.729	10.204	141.159	83,823	-7.297
700	35,892	242.225	222.560	13,766	140,730	74.300	-5.544
800	36,307	247.046	225.325	17.377	140.209	64.844	-4.234
900	36.619	251.342	227.982	21.024	139.614	55.459	-3.219
1000	36,861	255,213	230,514	24.698	138,958	46.143	-2.410

http://www.nist.gov/data/PDFfiles/jpcrdM9.pdf

NIST Webbook: http://webbook.nist.gov/


					Water - Mozilla Firefox
<u>E</u> dit <u>V</u> iew	Hi <u>s</u> tory <u>B</u> ookmarks	<u>T</u> ools <u>H</u>	elp		
Water		+	•		
• 🔶 🛞 we	bbook. nist.gov /cgi/ck	ook.cgi?Fo	rmula=h2o	&Nolon=on&Units=Sl&cTC=on	
Conder	nsed phase t	herm	ochem	istry data	
	-				
	lop, References, Notes				
Data cor	npilation copyright b	y the U.S. S	ecretary of	f Commerce on behalf of the U.S	5.A. All rights reserved.
Quantity	Value	Units	Method	Reference	Comment
$\Delta_{f}^{H^{\circ}}_{liquid}$	-285.830 ± 0.040	kJ/mol	Review	Cox, Wagman, et al., 1984	CODATA Review value
$\Delta_{\mathbf{f}}^{\mathbf{H}^{o}}_{\text{liquid}}$	-285.83	kJ/mol	Review	Chase, 1998	Data last reviewed in March, 1979
Quantity	Value	Units	Method	Reference	Comment
S° _{liquid}	69.95 ± 0.03	J/mol*K	Review	Cox, Wagman, et al., 1984	CODATA Review value
-	Value	Units	Method	Reference	Comment
Quantity	value				
Quantity S° _{liquid,1 bar}		J/mol*K	Review	Chase, 1998	Data last reviewed in March, 1979

View plot Requires a Java capable browser.

View table.

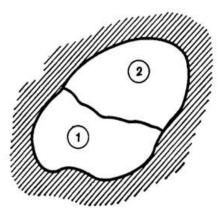
Open Systems

- Isolated system
 U=const
 V=const
 m=const
 S=max
- A subsystem in the isolated system

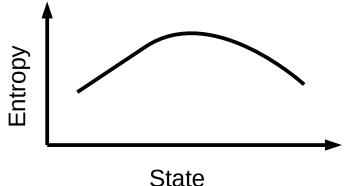
New variables in a function of state

$$U(S, V, n_1, n_2, \ldots)$$

$$G(T, p, n_1, n_2, \ldots)$$


Chemical potential

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j \neq i}} = \left(\frac{\partial U}{\partial n_{i}}\right)_{S, V, n_{j \neq i}}$$


 $dG = -TdS + pdV + \Sigma \mu_i dn_i$

Variational Principle

Isolated system
 $U = U_1 + U_2$ $V = V_1 + V_2$ $m = m_1 + m_2$ S = max A subsystem in the isolated system

Virtual change

Equilibrium Criterion

$$T_1 = T_2$$
$$p_1 = p_2$$
$$\mu_1 = \mu_2$$

http://twt.mpei.ac.ru/TTHB/2/KiSyShe/eng/Chapter5/5-3-Conditions-of-stability-and-equilibrium-for-an-isolated-homogeneous-system.html

Example 1: A mixture of N₂, H₂, NH₃, N₂H₄

- Given: a closed system at constant T, P, b_H, b_N
- Find: equilibrium number of moles

 $N_{2} + 3H_{2} = 2NH_{3}$

 $N_{2} + 2H_{2} = N_{2}H_{4}$

$$\min_{\substack{n_i \\ n_i}} G = \mu_{H_2} n_{H_2} + \mu_{N_2} n_{N_2} + \mu_{NH_3} n_{NH_3} + \mu_{N_2H_4} n_{N_2H_4}$$

$$2n_{H_2} + 3n_{NH_3} + 4n_{N_2H_4} = b_H$$

$$2n_{N_2} + n_{NH_3} + 2n_{N_2H_4} = b_N$$

$$n_i > 0$$

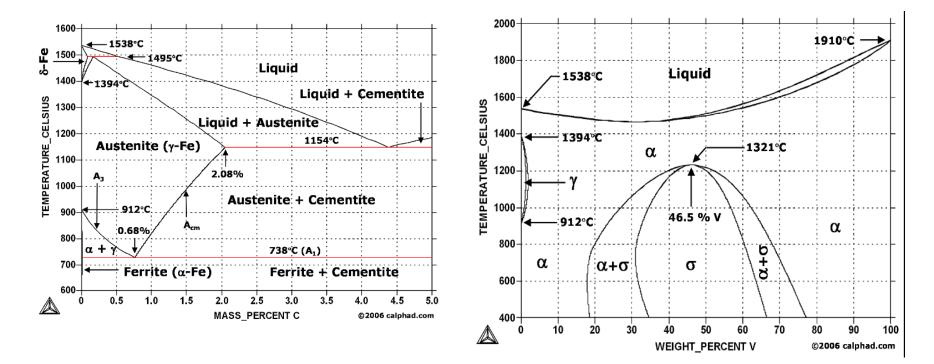
$$(1)$$

$$\min_{\xi_{j}} G = \mu_{H_{2}} n_{o,H_{2}} + \mu_{N_{2}} n_{o,N_{2}} + \mu_{NH_{3}} n_{o,NH_{3}} + \mu_{N_{2}H_{4}} n_{o,N_{2}H_{4}} + \xi_{1} \Big(2\mu_{NH_{3}} - 3\mu_{H_{2}} - \mu_{N_{2}} \Big) + \xi_{2} \Big(\mu_{N_{2}H_{4}} - 2\mu_{H_{2}} - \mu_{N_{2}} \Big)$$
(2)

$$2\mu_{\rm NH_3}^* - 3\mu_{\rm H_2}^* - \mu_{\rm N_2}^* = -RT \ln K_{x,1} =$$

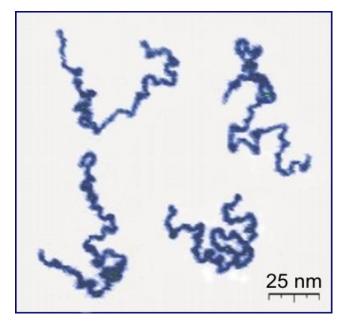
$$= -RT \ln \frac{(n_{o,\rm NH_3} + 2\xi_1)^2 (n_o - 2\xi_1 - 2\xi_2)^2}{(n_{o,\rm H_2} - 3\xi_1 - 2\xi_2)^3 (n_{o,\rm N_2} - \xi_1 - \xi_2)}$$
(3)

Example 2: One component phase diagram

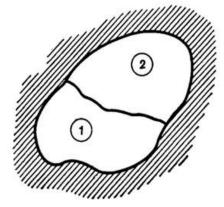

- Given: a closed system at constant T, P
 - Mole Gibbs Energies
 - ▶ Solid G_s(T, p)
 - Liquid G_L(T, p)
 - ▶ Gas G_G(T, p)
- Find equilibrium composition

$$\left(\frac{\partial G}{\partial T}\right)_p = -S$$

http://www.physics.rutgers.edu/~wdwu/351/Lecture15.ppt


CALPHAD: CALculation of PHAse Diagrams

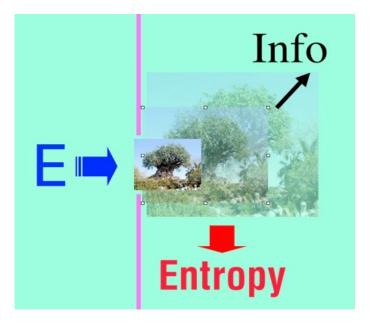
http://www.calphad.com/


Problems with Extension of Thermodynamics

- Thermodynamics of polymers
 - How to define state?

http://en.wikipedia.org/wiki/Polymer

Thermodynamics is additive U=U₁+U₂



- Interfaces
 - Gibbs' excess properties
- Long range forces
 - Another thermodynamics to treat the Universe

Biology, Entropy, and Information

- Brenner, S. (2012). The Revolution in the Life Sciences. Recognition of DNA as the carrier of information created a new fundamental dimension for viewing the natural world. Science 338(6113), 1427-1428.
- Entropy = Information?

P.S. My comment on the paper: http://blog.rudnyi.ru/2012/12/dna-as-the-carrier-of-information.html

http://www.kk.org/thetechnium/archives/2009/01/the_cosmic_gene.php

Short History on Entropy and Information, 1

- Ludwig Boltzmann, Statistical Thermodynamics
 - 1877, Entropy and the number of potential microstates
- Claude E. Shannon, Information Theory
 - 1948, A Mathematical Theory of Communication

The Bell System Technical Journal

Vol. XXVII

July, 1948

No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

Quantities of the form $H = -\Sigma p_i \log p_i$ (the constant K merely amounts to a choice of a unit of measure) play a central role in information theory as measures of information, choice and uncertainty. The form of H will be recognized as that of entropy as defined in certain formulations of statistical mechanics⁸ where p_i is the probability of a system being in cell *i* of its phase space. H is then, for example, the H in Boltzmann's famous H theorem. We shall call $H = -\Sigma p_i \log p_i$ the entropy of the set of probabilities

⁸ See, for example, R. C. Tolman, "Principles of Statistical Mechanics," Oxford, Clarendon, 1938.

Information Entropy

Short History on Entropy and Information, 2

- 1957, Edwin Thompson Jaynes
 - Entropy is Information!
 - Over 6000 citations in Google Scholar

Information Theory and Statistical Mechanics

E. T. JAYNES

Department of Physics, Stanford University, Stanford, California (Received September 4, 1956; revised manuscript received March 4, 1957)

"With such an interpretation the expression "irreversible process" represents a semantic confusion; it is not the physical process that is irreversible, but rather our ability to follow it. The second law of thermodynamics then becomes merely the statement that although our information as to the state of a system may be lost in a variety of ways, the only way in which it can be gained is by carrying out further measurements."

"It is important to realize that the tendency of entropy to increase is not a consequence of the laws of physics as such, An entropy increase may occur unavoidably, due to our incomplete knowledge of the forces acting on a system, or it may be entirely voluntary act on our part."

My Discussion on Entropy vs. Information

- Everything-list, http://groups.google.com/group/everything-list
- Summary at http://blog.rudnyi.ru/2012/02/entropy-and-information.html
- A number of practical problems to think it over
- 1.1) From CODATA [14] tables
- S ° (298.15 K) J K-1 mol-1
- Ag cr 42.55 ± 0.20
- ► AI cr 28.30 ± 0.10

What these values tell us about information?
25

Non-Equilibrium Thermodynamics

For example: Course at TU Delft

http://ocw.tudelft.nl/courses/sustainable-processes-and-energy-technologies/non-equilibrium-thermodynamics/lectures/

$$\Delta S + \Delta S_0 \ge 0$$

$$\frac{dS_{irr}}{dt} \Delta t = \Delta S + \Delta S_0$$

$$\frac{dS_{irr}}{dt} = \Omega \int_L \sigma(x) dx$$

$$\sigma = \sum_i J_i X_i \ge 0$$

- Entropy production is not a function of state.
- What is thermodynamic flux and thermodynamic force?

Extremum Principles for Entropy Production

- Prigogine: Minimum Entropy Production
 - Linear systems
- Now: Maximum Entropy Production Principle

Google Entropy Production Principle	
Scholar Ungefähr 176.000 Ergebnisse (0,06 Sek.)	
Beliebige Zeit Tipp: Suchen Sie nur nach Ergebnissen auf Deutsch. Sie können Ihre Sprache in den Scholar-Einstellungen. festle	egen.
Seit 2013 Maximum entropy production principle in physics, chemistry and biology	
Seit 2012 LM Martyushev, VD Seleznev - Physics reports, 2006 - Elsevier	
Seit 2009 The tendency of the entropy to a maximum as an isolated system is relaxed to the equilibrium (the second law of thermodynamics) has been known since the mid-19th century. However, independent theoretical and applied studies, which suggested the	
Zeitraum wählen Zitiert durch: 280 Ähnliche Artikel Alle 21 Versionen Zitieren Mehr -	
Nach Relevanz The minimum entropy production principle	
ET Jaynes - Annual Review of Physical Chemistry, 1980 - annualreviews.org	
Nach Datum sortieren It seems intuitively reasonable that Gibbs' variational principle de termining the conditions of heterogeneous equilibrium can be gener alized to nonequilibrium conditions. That is, a nonequilibrium steady state should be the one that makes some kind of generalized	
Zitiert durch: 180 Ähnliche Artikel Alle 2 Versionen Zitieren Web-Suche	
Seiten auf Deutsch The second law of thermodynamics and the global climate system: a review of the maximentropy production principle	mum
Patente H Ozawa, A Ohmura, RD Lorenz, T Pujol - Reviews of Geophysics, 2003 - agu.org	
einschließen The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are	
✓ Zitate derived for a rate of entropy production due to thermal and viscous dissipation (turbulent Zitiert durch: 180 Ähnliche Artikel Alle 21 Versionen Zitieren	
einschließen	

Entropy and Evolution, 1

- Annila, A. & S.N. Salthe (2010) Physical foundations of evolutionary theory. Journal of Non-Equilibrium Thermodynamics 35: 301-321
 - My review at http://blog.rudnyi.ru/2013/02/physical-foundations-of-evolutionary-theory.html
- P. 303 "A chemical reaction mixture is an example of an open system that will naturally progress toward the most probable, i.e., the maximum entropy, state."
- Put a glass with hot water on a table. The entropy of the glass will spontaneously decrease
 - The statement in the paper is factually wrong.

Entropy and Evolution, 2

- MAXIMUM ENTROPY PRODUCTION
- P. 307 "The 2nd law of thermodynamics in this form, as an equation of motion, is conceptually simple. It says: energy flows from heights to lows as soon as possible."
- Diamond at normal conditions is thermodynamically unstable. Yet, people still buy diamonds as investment for future hard times.
 - The statement in the paper is factually wrong.

My Personal Notes on MEPP

ELSEVIER

Physics Reports 426 (2006) 1-45

www.elsevier.com/locate/physrep

Maximum entropy production principle in physics, chemistry and biology

L.M. Martyushev^{a, b,*}, V.D. Seleznev^b

$$\delta_J \left[\sigma(J_k) - \mu \left(\sigma(J_k) - \sum_i X_i J_i \right) \right]_X = 0$$

- There are no simple examples:
 - Climate system; Crystal growth; Evolution in biology.
 - The simple problems have not been worked out.
- Relationship between minimum and maximum entropy production is puzzling:
 - "Thus, some hierarchy of the processes is observed. If the time is short, the system maximizes entropy production at preset fixed forces at a given moment. ... If the time is long, the system changes free thermodynamic forces so as to decrease entropy production."

Conclusion: Nice example on entropy and biology

http://www.facebook.com/photo.php?fbid=10151498176469589

Ille Gebeshuber: Not just Gold and magnets, but also ice is produced by bacteria: The bacterium *Pseudomonas syringae* produces proteins which cause water to freeze at fairly high temperatures.