Systems Analysis Reveals Novel Activities of Male Germ Cells

Presented in the Embryo Physics Course http://www.embryophysics.org January 13, 2010 By Stephen A. Krawetz, Wayne State University steve@compbio.med.wayne.edu

SYSTEMS ANALYSIS REVEALS NOVEL ACTIVITIES OF MALE GERM CELLS

The Krawetz Laboratory of Reproductive Systems Biology Molecular – Computational – Translational

A CHILD IS BORN

150 million sperm released20,000 lashings 2 h journey

Survival time ~48 h

1 cell

birth

10¹² cells

~27,000 genes \rightarrow 100,000 coding transcripts To specify 210 different cell types

COMPACTING THE GENOME

Each cell contains 2 meters of DNA packaged in a 3-20 µm diameter space

Sperm cell DNA is 13 x more compact

How is compaction determined?

How does compaction dictate phenotype?

SPERMATOGENESIS

SYNTENY OF THE HUMAN AND MOUSE PROTAMINE DOMAINS

THE HUMAN PRM1- PRM2 - TNP2 MULTIGENIC DOMAIN

THE HUMAN PRM1 - PRM2 - TNP2 DOMAIN IS A DISCRETE STRUCTURAL UNIT DURING DIFFERENTIATION

3' BOUNDARY FUNCTION & EXPRESSION PRM2 TNP2

PRM1

SOCS1

	I	- II					
10 K	- 5 ' + 3'						
5' Boundary							
Primer	Sample	Initial Template	Relative Expression				
PRM1	т	1.99E-06	100%				
	Δ	2.09E-07	6.3%				
PRM2	Т	4.33E-05	100%				
	Δ	3.1E-07	1.7%				
TNP2	т	1.94E-09	100%				
	Δ	0.00	0%				

RECAPITULATING THE NATIVE DOMAIN

GLOBAL DISTRIBUTION OF HISTONES AND PROTAMINES IN HUMAN SPERM

ISOLATION OF HISTONE AND PROTAMINE ASSOCIATED GENOMIC SEGMENTS IN MATURE HUMAN SPERMATOZOA

Restriction Digestion & Separate

Protamine

Ovcie Number

2.0

Purify & Analyze

Quantitative PCR

Comparative Genomic Hybridization

listone

ASSAYING HISTONE AND PROTAMINE GENOMIC ASSOCIATION IN MATURE HUMAN SPERMATOZOA

PROPERTIES OF 74,000 S/MARS

Compartmentalize Transcription:

Source of transcription factors
Stability
Functioning as boundary elements

Compartmentalize Replication:

Origins Replication Initiation

Compartmentalize Recombination:

breakpoint cluster regionsguide retroviral integration

CHARACTERISTICS OF MAR SITES Constitutive:

Exhibit cooperative mass binding

•SAF-A i.e., hnRNP-U

•Lamins

•NuMA/actin (nuclear mitotic apparatus protein)

Facultative:

Exhibit highly-specific binding

•PARP, SATB1 T-Cells, SATB2 and BRIGHT B-cells

Topoisomerase

THE NUCLEAR MATRIX

Positioning Function A threading function: MARs are selectively utilized

THE PROTAMINE LOCUS IS ASSOCIATED WITH THE NUCLEAR MATRIX

Nuclear Matrix Isolation

THE SPERM NUCLEAR MATRIX OF CHROMOSOME 16

THE HUMAN PROTAMINE LOCUS: aCGH

RECRUITMENT TO THE NUCLEAR MATRIX DURING MOUSE SPERMATOGENESIS

EPIGENETIC MODIFICATION OF THE DOMAIN DURING SPERMATOGENESIS

acH3K9/14		acH3K9/14	\checkmark		
acH4K16		acH4K16			
me2H3K9		me2H3K9		Τορ 2 α β	$\mathbf{\nabla}\mathbf{\nabla}$
HP1	×	HP1	×		
SATB1	×	SATB1	×		

AN EPIGENETIC MODIFICATION OF THE DOMAIN DURING SPERMATOGENESIS

DOMAIN MARKED - top2 α top2 β bound - promoters acetylated

β

α

Prm2

leptotene /zygotene spermatocye

top2 α

top2β

Prm1

histone acetylation

CNS1

Tnp2

nuclear matrix attachment 5 kb

β

CNS2

POTENTIATING THE Prm1→Prm2→Tnp2 DOMAIN DURING SPERMATOGENESIS

Prm1

DOMAIN POTENTIATED

- upstream MAR bound

-promoters acetylated

top2 β

Ac

α

α

top2 α

CNS1

Tnp2

Pachytene spermatocyte

histone acetylation

nuclear matrix attachment

β

CNS2

5 kb

POTENTIATING THE Prm1→Prm2→Tnp2 **DOMAIN DURING SPERMATOGENESIS**

- 5' & 3' MARs bound - top2 α & top2 β bound
 - extensive acetylation

histone

acetylation

SOCS1

top2 α

α

ß

top2 β

nuclear matrix attachment 5 kb

spermatid

LOCALIZATION OF RNA WITHIN THE SPERM NUCLEAR MATRIX

-DNase -RNase

+ DNase

+ RNase

DAPI

RiboGreen

Merge

0 min

30 min

30 min

LOCALIZATION OF SPERM RNAs TO THE NULCEAR MATRIX

Ropporin

DAPI

Merge

Decondensed nucleus

Nuclear Matrix & Halo

DNase treated Nuclear Matrix & Halo

RNase treated Nuclear Matrix & Halo

Sperm RNAomics

1.8x10⁸ spermatozoa Pool

> RNA > 200 nucleotides Arrays & DGE

RNA < 200 nucleotides

0.75 fg/spz

20 ng Solexa small RNA DGE 18-30 nucleotides

Distribution of small RNAs

The potentiated protamine domain is maintained in an open chromatin conformation independent of histone association.

Potentiation appears to initiate through a topoisomerase mediated mechanism.

Organization of chromatin by the sperm nuclear matrix appears markedly different than somatic cells.

Regions of strong attachment with a background of attachment to the nuclear matrix across the chromosome.

Wayne State University Ob/Gyn & MolecularAlumni:Medicine & Genetics

J. Nelson S. M. Wykes J. Kramer C. Ostermeier R. Martins **Collaborators:** Ob/Gyn: M.P. Diamond CMMG: H. Heng Univ. Leeds: D. Miller LANL: N. Doggett Univ. Utah: D. Carrell **GBSF:** J. Bode **Oakland University:** G. Singh

