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Abstract 

Living systems use information and energy to maintain stable entropy in a system 

that is far from thermodynamic equilibrium. However, a quantitative relationship 

between information and the function and growth of a living system has not yet 

been developed.  We propose a fundamental principle of living systems is that every 

process of life, including metabolism, signal transduction and protein synthesis, 

represents a flow of information which, when expressed as Fisher information in 

particular, is constrained to be either a maximum or minimum.  Either extreme 

state is invariant to first-order perturbation and, hence, maintains stable entropy, as 

required. Such a state also optimizes intracellular information flow, by the suitable 

adjustment of the information source and the trajectories of information carriers.  

This principle has, so far, predicted the (i) observable function and growth 

characteristics of normal cells or multicellular organisms; the (ii) Lotka-Volterra 

equations and (iii) power laws of allometry for normal growth. Similarly, it has 

predicted the (iv) loss of normal function and growth in early cancers, by assuming 

that carcinogenesis is fundamentally an information “catastrophe” where 

information regarding cell age and location undergoes transition from a maximum 

to a minimum state.  The minimum leads to a predicted (and confirmed) power-law 

governing in situ cancer growth in time. (v) It also predicts a program of 

chemotherapy (termed “adaptive therapy”) that converts the process of cancer mass 

growth into one of monotonic mass reduction, indicating conversion to a chronic, 

but manageable, condition.   

 



Introduction  

     Growth and function of a living system depends positively upon its information state 

[1].  This connection ultimately traces to the 2
nd

 law of thermodynamics which, oddly 

enough, is a statement of decreased information.  That is, the 2
nd

 law requires the level of 

disorder of a system, i.e. its entropy H , to temporally approach a maximum value. 

Increased disorder implies reduced information. However, the 2
nd

 law is of a specifically 

global nature. This permits local pockets of disorder that is less than that of the 

surrounding system..  

     Such local increases in order can occur randomly in, for example, crystal formation. 

These local alterations in entropy also require energy and typically move toward a stable, 

equilibrium  state of low entropy and energy.  

     Living systems, in contrast, maintain a dynamic but stable state of lower entropy 

which is far from equilibirium. This is  by using energy judiciously. The stability of this 

low entropy state requires the expenditure of energy in order to both maintain and use 

information that forms the entropy gradient between the living system and its surround.  

Thus, living systems achieve not the lowest possible entropy state but, rather, the lowest  

possible entropy gradient as constrained by available energy.  This suggests that Fisher 

information, which is both a measure of entropy and order (see below) and an estimate of 

energy cost, can be used as the metric in a first principle of the thermodynamics of living 

systems. This leads, in turn, to the principle that the information state of a living system 

is at an extreme value.  An extremum can be a maximum, minimum or point of 

inflection. The types of extema attained in living systems are as follows. 



     In single cell organisms, energy costs dominate and information is maintained at a 

minimum. This is the minimum level necessary to maintain a stable system, robust to 

environmental perturbations.  

     In larger, multicellular organisms, the information is maintained at a maximum, 

because the energetic cost of maintaining sufficient order and information  storage is 

minimized by the state of multicellularity. 

     The particulars of these effects follow. 

Maximum Fisher Information 

     We propose that normal evolutionary dynamics favor living systems that approach a 

state of maximum information which allows such systems to remain robust in the face of 

random environmental perturbations. In effect, evolution favors organisms that are 

maximally different from the disordered environment.  Many growth and development 

laws of natural science have, in fact, been derived on the basis of this principle of 

maximum Fisher information [2].  One example is the famous Lotka-Volterra equations 

which describes the interactions of competing populations [2,3]. Another is the quarter-

power laws of biological allometry [4,5] 

                                                       4/nmy  ,                                            (1) 

where y  is a biological observable such as heart rate, n is a corresponding integer (e.g. 

1n  for observation y of heart rate), and m is the mass of the organism.  Most 

recently, a requirement of maximum Fisher information [6] was used to derive Fisher‟s 

fundamental theorem of natural selection.   

Minimum Fisher Information 



     Cancer cells, by contrast, grow in an uncontrolled, visibly disordered fashion. Hence, 

an intuitive corollary of the preceding is that cancer cells are in states of minimum 

information. This is the low level of information necessary to maintain the ability to 

proliferate in the absence of the differentiated function of normal mammalian cells 

[1,2,7,8]. The latter is consistent with clinical observations that cancer cells lose normal 

functionality so that malignant cells are invariably less differentiated than are their 

normal counterparts.  For example, lung cancer cells no longer participate in gas 

exchange which is a major differentiated function of normal lung epithelial cells from 

which the originate. Similarly, malignant cells, as a result of damaged or missing 

telomeres, effectively lose function about their age so that they are typically immortal 

unlike normal cells that undergo apoptosis after approximately 100 doublings (the 

Hayflick limit).  Thus, somatic evolution in carcinogenesis favors organisms with a 

minimum information  state – opposite from the process usually observed in nature.  

    A hallmark of cancer cells is continuous, inappropriate proliferation which results from 

disordered flow of information between the cell and its tissue environment. That is, 

cancer cells are both unresponsive to normal growth inhibitory signals from the 

environment and constantly receive pro-proliferation signals due to upregulation of 

oncogenes.  Central to control of cell growth are messenger proteins that carry 

information from receptors on the cell membrane to the nucleus, which then controls 

cellular response. For example a common mutation in cancer alters one or more 

components of the epidermal growth factor receptor (EGFR) signaling pathway so that it 

is continuously activated. Since the EGFR pathway promotes (among other things) 

proliferation, the cell is essentially sending itself artifactual signals to proliferate. Thus, 



even in the absence of actual ligand binding to the EGFR, the nucleus receives signals as 

though a high concentration of the ligand (i.e. epidermal growth factor) were present in 

the environment.  Interestingly, as a result of these mutations, a large amount of 

information in the form of messenger proteins passes between the CM and the NM, but 

virtually all of it is false.  Thus, cancer cells suffer a progressive loss of accurate 

information regarding the proliferation instructions from the surrounding normal tissue  

We propose that a cell, in fact, becomes cancerous when accumulated mutations result in 

a maximal state of inaccuracy. That is, the information content of the cell regarding, for 

example, its age and growth instruction from surrounding tissue, is minimal.  We will 

show that this state of minimum information actually gives rise to the known temporal 

power-law 62.1t governing the in situ growth [1,2,7,8] of such cells. 

Extreme Fisher Information 

     In summary, we propose that biological growth in general follows principles of 

extreme Fisher information. This is either maximum information for normal growth or 

minimum information for cancer growth. Interestingly, the difference appears to depend 

on the fundamental unit of growth (i.e whether it is a single cell or a multicellular 

organism) and the information state of the environment. Evolution favors individual 

cancer cell with an information minimum; while functioning muticellular organism in a 

heterogeneous environment must approach an information maximum.  Extremizing the 

Fisher information also benefits cell function in other ways, as discussed in the next two 

subsections. 

Stable Entropy 



An extreme state is, by definition, stable to first-order perturbation, e.g. due to exterior 

factors such as random temperature shift. Hence a living system that is in a state of 

extreme Fisher information, whether the extremum is a maximum or a minimum, gains 

an advantage of stability. This tends to keep it in a stable entropic state, as is required of 

living cells.  This stability property is easily shown, e.g., for the wide range of probability 

laws that are members of the exponential family (see below). There the entropy H and 

Fisher information I are connected by the relation 

                   )2exp()2( HeI   , so that HII  2/                          (2) 

after taking a differential. Since 0I  at extremum solutions then likewise .0H  

That is, extremizing the Fisher information stabilizes the entropy. 

    Another manner by which Fisher information controls the stability of the entropy is as 

follows.  

Fisher I as a bound to entropic change 

     Although the 2
nd

 law states that 0/ dtdH at all times t  it does not prescribe any 

upper bound to the change dH in entropy.  In fact systems of mass m kept at a 

temperature T obey a well defined upper bound [2] to dH according to the level )(tI of 

Fisher information present.  The relation is  

                                        ,)(tIC
dt

dH
 with 

m

kT
C

2
 ,                          (3) 

T the temperature and k  the Boltzmann constant.  Thus, if I is at an extreme value so is 

the allowed change dH in entropy.  Also, the increase of C with T shows that the higher 

the temperature is the more the system disorder can increase relative to the present level 



of information (or „order,‟ as discussed next) .I   This makes intuitive sense, and gives 

rise to the following speculations. 

     Eq. (3) predicts that if a system is perturbed by some external effect, the I of the 

system will constrain the effect of that perturbation . Doesn‟t this then imply that a robust 

living system will want to have a minimal I to effectively damp the effects?  But perhaps 

this does not apply to multicellular organisms because the organism itself dampens the 

environmental perturbation dH  so that the individual cells are protected.  This may be 

part of a “deal” by which individual cells give up their independence to become a 

component of the multicellular organism. It also tends to explain the earlier statement that 

single cells tend to seek minimum I while multicellular organisms seek a maximum I . 

Are information and ‘order’ synonymous?  

 We use the words „order‟ and „information‟ interchangeably. As recently found 

[9]: (a) A system‟s level of order varies linearly with its level of Fisher information, i.e. 

order  

                                                         .8 21 IKLR  ,                                  (4) 

Here K  is the number of system dimensions, L is its one dimensional extension; and (b) 

both the order and the information are entropies, i.e. measures of system order that 

change monotonically with the time.  Hence, information I is an intrinsic property of the 

system, as well as a property of its data.   

     Result (4) indicates that a linear polymer protein, with 1K  , represents intrinsically 

less order than a cell membrane, with 2K  , and this has less order than the composite 

cell, of dimension .3K   Thus, the energy requirements for maintaining these levels of 



order likewise increase in this manner.  Maintaining systems of high complexity 

intrinsically require higher levels of energy.   

     Result (4) is also in agreement with the observation that, unlike crystals – which have 

relatively uniform order throughout --  living systems are dynamic. These require 

variations in order (as discussed below), e.g. in transition from the ordered cell 

membrane to the relatively disordered cytoplasm, in order to maintain a stable state far 

from equilibrium. The relation  (4) predicts the requisite variation, or flow dI , of 

information that gives rise to the required change dR  so as to maintain that state.  The 

connection is dIKLdR )8( 21 .  

Overall extremum condition 

     Maximum and minimum values are of course extreme values. Thus, in general, cells 

grow on the basis of extreme Fisher information I. If they are cancerous the extreme 

value is a minimum; or if functional, the extreme value is a maximum. The purpose of 

this paper is to summarize and further develop this hypothesis. Its central tool, Fisher 

information, is introduced and discussed next. 

Fisher information 

    Consider a system with a characteristic parameter whose value is sought by analysis of 

its data. The data are used to form a mathematical estimate of the parameter. The 

information I defined by R.A. Fisher [10] measures the level of information in the data 

about the parameter.  It is a local measure (see below).  

Shift invariance property 

     Let a required parameter 0x  be measured, as a data value xxy  0 , with x  a random 

error obeying some probability law ).(xp  The system is assumed to obey shift 



invariance, i.e. )()()|( 00 xpxypxypY  . The data are processed arbitrarily to form 

an estimate of 0x . Denote the mean-squared (ms) error over many such estimates of 0x as 

2e .   

Cramer-Rao inequality 

     Its minimum possible error 
2

mine  obeys [11], [12] 

                                          Ie /1
2

min  , where xxy  0  ,                                          (5) 

where I is the level of Fisher information about the parameter that is present in the data.  

Thus, a system with a high level of information gives rise to a low ms error, and vice-

versa.  Relation (5) is called the Cramer-Rao inequality.   

     The information may be expressed alternatively as 

                         )('4)(/)(' 22 xdxqxpxdxpI ,  ,)()( xpxq                               (6) 

with )(xq defined as the probability amplitude of the system. Primes denote derivatives 

./ dxd  The amplitude (second) - form of I is often used to compute I  because of its lack 

of a quotient in the integrand.  Information I has the following distinctive property that 

makes it well suited for predicting living systems. 

Local nature of I 

     Central to our thesis is that life is a local phenomenon (see Introduction).  Note in this 

regard that either expression (6) for I is a local measure.  This agrees with the view that a 

cell is not a a single unit but, rather, consists of two or more local units, each with its own 

value of I (examples are the membrane and a DNA molecule).  This makes sense since 

the building blocks of each region are different: DNA is made up of nucleotides while the 

cell membrane is made up of lipids which are long carbon chains. The point is that the 



cell will have several internal, local probability amplitudes, including ones for 

nucleotides, lipids, and amino acids and ones for the intracellular space and its 

environment .   

     Note also that, mathematically, a “local measure” is one whose value can change 

drastically under local rearrangement of its points .x  Any such rearrangements of 

points x excite discontinuities in the curves of )(),( xqxp , giving local points of infinite 

slope )(' xp  or )(' xq , and contributing infinities to the integrals (6) for I . By 

comparison, a global measure, such as the entropy  

                                    )(log)( xpxdxpH                                         (7) 

or its corresponding summation form, does not depend upon local derivatives of )(xp  or 

)(xq and, hence, does not change its value if the points x are rearranged.  As discussed 

above, life is an expression of high local order. On this basis, the use of a local measure 

such as I  seems optimum, and a global measure such as H suboptimal, for purposes of 

mathematically modeling its structure, i.e. complexity of order.  By comparison, the use 

of H  is essential in evaluating the inputs and outputs of heat and other forms of energy 

from the ordered, living system. This is through the well-known equivalence kHTE   

equation of heat energy E  and entropy H  with T the temperature. 

Exponential family 

     The exponential family [12] of probability laws )(xp  will be of particular interest to 

us. It includes many of the most common laws, including the normal, exponential, 

gamma, chi-square, beta, Dirichlet, Bernoulli, binomial, multinomial, Poisson, Rayleigh 

and many others.  Each of these has a well-defined variance value 2 in the random 



variable .x  Remarkably, substitution of any of these laws )(xp  into (2) gives the same 

result  

                                                  2/1 I .                                                      (8) 

for the Fisher information about the parameter. Note that this formula in particular will be 

shown to describe the spatial growth of functional cells.  Also of use is that any member 

function of the exponential family actually achieves the minimum possible error 

mine value I/1  expressed in Eq. (5). 

     Intuitively, a high variance, or uncertainty, in its data defines a system that provides 

low order or information I  about the unknown parameter. This is quantified in (8). It 

states that a haphazardly growing cell, with a resultingly high spread 2 in values of a 

parameter defining its stage of growth, contains minimum Fisher information about that 

stage of growth.  Or, conversely, cell growth obeying small spread 2 in the parameter 

displays maximum Fisher information about the growth. 

Cancer cell growth obeys minimum temporal information 

     A cancer cell characteristically exhibits diminished function, and structural order 

(dedifferentiation and dysplasia) while multiplying and expanding its population with 

little if any constraint (with a rate likely to vary with cell type). Thus, a given cancer 

typically displays a high level of genotypic and phenotypic heterogeneity among its cells. 

The “tissue” formed by the malignant cells is both morphologically and functionally 

disordered compared to the tissue of origin  This amounts to a degree of structural 

disorder compared to that of the normal tissue of origin. Typical levels of disorder range 

from well-differentiated to anaplastic.  Furthermore,  cancers ofen become progressively 

less differentiated as they progress [1,2,7,8].  A fundamentally related characteristic of 



cancer cells is that they become immortal, so that their proliferation is inappropriate, 

within both the context of tissue formation and of their age.  We discuss this latter 

phenomenon next. 

Lack of a telomere-based ‘internal clock’  

     Telomeres are small sections of DNA at the end of each chromosome that shorten 

each time the cell undergoes mitosis. In this way the cell can “know” its age and after 

reaching senescence (ie. undergoing a specific number of proliferation events) the cell 

undergoes  programmed death. However, cancers typically lack this measure of aging. 

.Thus, a cancer cell‟s growth is no longer limited by spatial constraints (generated by the 

environment) or temporal constraints such as age.  Thus, a cancer cell possesses minimal 

temporal information, 

                                                         .minI                                                   (9) 

(We will see below that the situation is exactly the opposite for a functioning cell.)  

Scenario of periodic screening for cancer 

     We next apply these results to an important scenario. We now know that cancers 

typically evolve through a series of premalignant lesions over many years or even several 

decades. Cancer can be detected clinically only when it achieves a volume that is either 

palpable, visible on an x-ray, or causes symptoms such as pain. While this can obviously 

vary, 1 cc of tumor is usually the minimum detectable mass – but this tumor will contain 

on the order of 1 billion cells.   

     An important question is the value of screening in reducing mortality. The clinical 

outcome of most cancers is dependent not on the size of the primary tumor mass but on 

the presence of metastases. That is, about 90% of cancer deaths are due to metastases 



with the primary tumor having been controlled or eradicated. While the size of the tumor 

is generally predictive of metastases (i.e. the bigger the tumor the more likely metastases 

are or will occur), this is by no means a flawless relationship so that small tumors can 

disseminate and large tumors may not seed tumors in other organs. Here we examine this 

relationship by assuming that the dissemination of metastases from a primary tumor is 

directly related to its stage in the carcinogenesis process which we will designate as its 

“age.” However, detection of tumor is based on its size. We ask the question: What is the 

limitation of screening because of the difference between size and age?  This has clinical 

relevance because it places a lower boundary on the efficacy of current cancer screening 

strategies.   

     To approach this problem we assume a patient acquires the first stage of 

carcinogenesis at age 0t .  This defines the theoretical onset time of the cancer. However, 

the initial observation of a cancer requires it to be greater than some minimal size. It 

results that any screening method that attempts to measure 0t  must always suffer some 

random delay, giving a generally greater value tt 0 for the assessed onset time, where t  

is a random variable. Let this obey some probability law )(tp , where Tt 0 , the latter 

the fixed total time between routine screenings of the patient for cancer.  

     A guiding principle underlying the choice of course of such treatment is the general 

assumption that the older a tumor is the more likely it is for metastases to have 

developed. growth  Hence, the ultimate question to be addressed here is accuracy of the 

tumor size (which determines its detectability in screening) and its age (which determines 

probability of metastases) As it turns out, these can be known once we determine the 

cancer.mass growth law ),(tm  with m the mass.     



The growth law 

     Using principle (9) results in the prediction [1,2,7,8] that the relative mass )(tp  

)(tm of an in situ breast cancer (its mass relative to the total breast mass) grows with time 

t as simply  

                                 ,
1

)()(
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









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


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tptm                                                 (10) 

where T is the time between clinical screenings for cancer, and the exponent ...618.1 , 

the Fibonacci golden mean. This law shows a price paid for having a long time 

T between screenings: a more spread out law )(tp  governing uncertainty in knowledge 

of the onset time.  This, in turn, gives lower information I about 0t as shown below. The 

law (10) was clinically confirmed
 
as well.  See Fig. 1. 

 
Fig. 1 Comparison of theoretical growth curve (straight line) with clinically 

observed values (details in [10]) 

 



The theoretical (straightline) curve of (10) (on the log-log basis) shows good agreement 

with clinically observed values of the cancer mass. 

Minimized information level 

       Also, using result (10) in either of Eqs. (6) (with tx  here) gives the information 

level 
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about the growth time .0t  Thus, the information level (11) falls off rapidly (quadratically) 

with the time T between screenings. 

      At this point the value of   is unknown. However, by hypothesis (9) I  a minimum 

value.  Hence, with a given screening period T , (11) can only be a minimum through 

choice of . Then we merely differentiate (11) with respect to   and set the result equal 

to zero.  This is handily done, giving a quadratic equation in   whose only positive root 

is ...618034.1)51(
2

1
  Interestingly, this is the Fibonacci golden mean, a 

parameter well known to describe biological growth (although for functional-, rather than 

the malignant, growth assumed here).  

Resulting error in estimated age of cancer 

     Substituting this number   into (11) and using the resulting I  in (5) gives 

                                     Te 3003.0min  .                                         (12) 

Thus, there is a 30% error in the best estimate of the age of a cancer! With yearly 

examinations ( 12T mo) this is an error of about 4 months, rather substantial. Thus, 

cancer screening is intrinsically limited by the inherent discordance between tumor size 



and age.  This is consistent with even rigorous screening for breast cancer and lung 

cancers by yearly mammograms and CAT scans respectively cannot totally eliminate 

deaths caused by the disease. 

        This, and the experimentally confirmed result in Fig. 1 further support the 

information minimization approach (9) for malignant cells. The extensive data on 

telomere shortening in malignant populations [13] further supports these results.       

Programs of therapy 

     The ultimate aim of therapeutic programs for cancer is to induce catastrophic collapse 

in the cancer growth. In fact the power-law form of the growth Eq. (10) conveniently 

lends itself to such collapse [14]. One merely replaces the real exponent   with a 

generally complex one, with the imaginary part linear in a time-dependent therapeutic 

activity program )(ta . Effectively, the imaginary part acts as a phase effect capable of 

canceling the basic power law growth. Consequently the growth law takes the form  

))/ln()((cos)/()( 0

2

0 tttattAtp  , where quantity ))/ln()(( 0ttta  is the phase angle 

mentioned previously. 

     The activity program may be clinically imposed, e.g. as chemotherapy of dose a(t), or 

may occur naturally as a time-dependent immune response a(t). Then, with constant 

therapy a(t) = const. the cancer mass p(t) grows with time t as the power law (10) but 

modulated in time as a cosine wave. This wave describes the typical relapses and 

remissions of cancer growth that occur during chemotherapy.              

     These have a biological basis in the known existence of multiple alleles during cancer 

growth, which take turns dominating as their more dominant rivals are suppressed by the 



therapy. The curve also agrees fairly well with clinical data on breast cancer recurrences 

following mastectomy.  Evidently a constant dose rate is not the answer.  

     Fortunately, since the theory allows use of a time-varying dose )(ta , an optimum such 

program may be imposed. The aim is to achieve a non-oscillatory, gradual approach to 

full remission over time. This would effectively convert cancer into a chronic, and 

manageable, disease. Such a mathematical solution was found. Both activity a(t) and 

cancer mass m(t) monotonically decrease with time, the dose a(t) as 1/(ln t) and mass 

remission as 382.0t .  The latter curve is shown in Fig. 2, for different initial values 0a of 

the dose.  The theory was partially confirmed in laboratory experimentation with mice 

bearing a human ovarian cancer xenograft and treated with a platinum-based  

chemotherapy[15]. 
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Fig. 2. Cancer mass p vs relative time t/t0 in induced catastrophe. The therapy is 

turned on at .0tt  Growth histories at different initial therapy levels 0a : the top 

curve is for 0a  = 3; the middle is for 0a  = 5; and the bottom is for 0a  = 10 or higher, 

effectively defining the remission curve. 

 

 

Functional cell growth obeys maximum spatial information  



     Normal tissue development and organization requires an exchange of information 

among cells. Much of this information is carried by excreted proteins (such as growth 

factors) that diffuse through the tissue and bind to specific receptors on the cell surface. 

The information is then carried (transduced) from the cell membrane to the nucleus via 

messenger protein. There are three components of information that are potentially 

available when a growth factor binds a membrane receptor; the 

1. presence of the ligand in the environment; the 

2. time at which the ligand bound to the receptor; and the  

3. location on the cell membrane at which the ligand arrived 

Clearly the messenger protein, by its mere presence, carries information that a ligand 

bound to a receptor on the CM. We propose that these also carry both timely and spatially 

accurate environmental information. 

     The information transfer is initiated when a ligand binds to a CM receptor. This, in 

turn, results in the addition of phosphates to specific amino acids on a messenger protein. 

(This can also be a sequence of messenger proteins, as in the case of the EGFR signal 

which is carried by 3 different pathways, with one consisting of sequential 

phosphorylation of RAS-RAF-MEK-ERK). Here we focus on information that is 

specifically spatio-temporal, i.e. about the initial time and position at which this cascade 

of phosphorylation began in response to ligand binding of EGFR.  

      Thus, in contrast to cancerous cells, we postulate that functioning cells have a 

maximum level of structural order, enabling them to develop and function as 

differentiated cells.  Then, intuitively, if (as above) dysfunctional cancer cells operate out 



of a state of minimum Fisher information, the opposite scenario of highly ordered, 

functioning cells should be in states of maximum information, 

                                                           .maxI                                                     (13) 

 We first concentration attention upon the information about the lateral position 0x of a 

typical messenger protein as it strikes the nuclear membrane (the temporal information is 

considered later). Here the random variable x  and the size of the protein define the 

uncertainty in knowledge of 0x . Once this is calculated, the corresponding temporal 

information will follow readily. 

     An interesting question we address is, why are there 4 proteins in the EGFR sequence? 

Why not 6 or 8?  Also, why does the cell go to the trouble of passing on information from 

one constituent EGFR protein to the other when it seems it would be easier and more 

efficient to just have one protein messenger carrier?  

Information capacity requirement of functional growth 

     We propose that the hypothesis of maximum information requires optimal transfer of 

information from CM to NM via messenger proteins.  That is, the channel of information 

achieves its full capacity in transmitting the information. (Note: this is not the usual 

Shannon information channel capacity [12] since we are using Fisher information 

instead.) The information is calculated on the basis of a recent paper [16], summarized 

next. 

Directed protein motion 

     The CM-NM information transfer will be maximal only if the proteins obey directed 

motion toward the nucleus. The alternative - motion purely by diffusion - would instead 

randomly disperse the proteins and the information they carry throughout the cytoplasm. 



Consider a cohort of proteins that simultaneously leave the CM. Since the distance each 

protein travels through the cytoplasm is the order of 1000 times its diameter, if each 

traveled purely by diffusion the resulting motion would be extremely slow, and with 

highly variable transit times at the NM. Furthermore, since the phosphorylated messenger 

proteins are subject to inactivation by phosphorylases within the cytoplasm, their 

dispersal throughout the cytosol would result in significant information loss. Thus, 

movement of messenger proteins by random walk would result in slow and unreliable 

information flow to the NM, which is contrary to our hypothesis (13). In fact we propose 

that messenger protein movement is not purely diffusive but, rather, dominated by an 

intra-cytoplasmic electric field E(r) originating at the positively charged nuclear 

membrane.  This type of motion turns out to obey hypothesis (13).  

Critical role of phosphorylation 

Typically, information is passed from one messenger to another through 

sequential phosphorylation of specific amino acids in the protein. Extensive research on 

this information transfer has entirely focused on the changes in protein structure that 

result from phosphorylation. However, we propose that a critical additional result of 

phosphorylation is that it adds net negative charges to the protein. Hence the latter is 

attracted toward the positively charged nucleus, obeying directed motion rather than 

undirected, random diffusion. 

     We frame the information hypothesis as a mathematical principle of cell development, 

asking: Under the charge-directed motion that is proposed, what protein pathway 

accomplishes a maximum information transfer rate from CM to NM? And what is the 

value of this information? 



     Here the information is that contained in the arrival position y on the NM of a typical 

messenger protein, where the ideal position is 0x .  The ideal position is defined purely by 

the shielded Coulomb law previously considered. The position 0x  is „ideal‟ in that it 

follows some program of optimum cell growth with time.  Thus the total excursion of the 

protein is  

                                                           ,0 xxy                                              (14) 

with x  random according to some law.with standard deviation ).(x  

     It is shown in Appendix A that the information I about achieving the ideal messenger 

position 0x on the NM obeys Eq. (A10) of the Appendix, 
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is the diffusion constant in cytoplasm, 2aA   is the cross sectional area of the nucleus, 

and F is the arrival flux rate. Notation )( 0xI signifies specifically the information about 

the ideal position 0x on the NM. The information )( 0tI about the ideal transit time 0t will 

be found later. The spatial information (15) thereby decreases with increasing 

diffusion D , which makes sense, and increases with both the nuclear area A  and flux rate 

F . These are also intuitively correct trends. Eq. (15) also shows that, for given values of 

A and D , if F is maximized so is I . We first observe how F varies with values of the 

Debye-Huckle parameter k0;, and then compute I from this. 

Particle flux F curve 

     Using the constants in Table 1 of Appendix A and Eqs. (14), (17), in Fig. 3 the flux F 

by is plotted vs. values of k0 . 



  

Fig. 3. Flux F (proteins/area/ time) at the NM as a function of k0 

     The curve for F shows a strong decrease (by orders of magnitude) once k0 is greater 

than roughly 6100.5  m
-1

.  

     Of key importance in Fig. 3 is that F goes smoothly to zero at both small k0 and large 

k0 . This implies a definite in-between value max0 kk  for which F = max. maxF . From 

the figure this  
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central to the range. These represent the presence of either 1,2,3 or 4 types of protein (see  

Appendix S2 of [16] and Conclusions section).  

Resulting information )( 0xI  

     Our overall criterion of cell development is that information .max)( 0 xI   Using 

maxF from (16), D  from Eqs. (15), and by 22 3.28 maA    from Table 1, Eqs. (15) 

gives 
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Then from Eq. (5) the corresponding rms error in position is 

                                                 m
I

e 3

max

min 1094.5
1  .                       (18) 

Relative to the NM size ma 62  , this is an error of 0.1%, quite small.  Even more 

remarkably, this small error is attained every 0.01 sec by a protein cloud (or „scaffold,‟ 

see below). 

Predicted size of messenger protein  

     The figure (18) of nme 94.5min   represents the total uncertainty in protein position 

0x  at the NM on the basis of maximum information. The calculation took into account 

protein density and, hence, protein size. Of course, at present it is not known how the 

nucleus estimates the ideal position 0x  of a protein. However, it must depend upon (at 

least) both (a) observed positions ny [see Eqs. (14)] and (b) size values md  of the protein.  

These may be regarded as random samples from two probability laws: (a) on the 

uncertainty x  of the center of gravity of the protein;  and (b) the uncertainty d  in the size 

of the protein, arising out of random protein foldings en route. Let both random variables 

x and d  be Gaussian distributed, the latter with an rms uncertainty of value pd . This also 

represents the effective size of the protein. Since the processes governing x  and d are 

statistically independent, the total information maxI is then the sum [10,11,12] of the two.  

     It results that the total information acquired by the NM from each protein detection 

event has a two-fold contribution 
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the latter from (17).   



     But to find the protein size pd we need another relation:  There are two independent 

and additive contributions, x  and d , to the positional error. Then by (18) its variance 

2

mine  obeys 

                           .1094.5 23222

min mde PX                                   (20) 

We may regard this as a Lagrange constraint on the extremum condition (19).  The two 

together give a unique solution for the unknowns Pd  and X , 

                                        .4nmd XP                                                     (21) 

As a check on this solution, the extension of an EGFR protein is about nm3 , close to this 

value.  It follows that, on the basis of maximum information and conservation of 

resource, the largest permitted messenger protein is about the size of the EGFR. 

Required processing task 

     The nucleus can process detected protein positions no more rapidly than the traversal 

time sta 01.0  for all proteins . The quality of each such output estimate 0x  then grows 

with the net number aN  of detected proteins per traversal time at .  How large is aN ?    

     The arrival flux of proteins about the position 0x  on the NM was found at (16) to be 

smproteinssmproteinsF 25217

max /10/10  .  Multiplying this by the NM area of 

about 22 28 ma    gives the total arrival rate, of about sproteins /000,800,2 . Or, the 

nucleus processes aN 28,000 arrival locations every traversal time sta 01.0 . This is a 

challenging  problem of data reduction.  In summary, evolution has developed a very 

accurate ( nme 94.5min  ), fast (28,000 locations processed per 0.01 s) system for 

accomplishing the spatial aspect of the overall problem of cell development. There are 

also temporal uncertainties, as next.   



Temporal information level )( 0tI  

    The information )( 0xI about the ideal transverse position 0x on the NM was found at 

(17). It is also important to know the information )( 0tI about the ideal time att 0 of 

arrival at the NM.  This can be defined by the use of (8) for a known rms fluctuation in 

time )( at .  This gives rise to a fluctuation )( atvx  in path length at apparent arrival 

at the NM, for a mean protein velocity over the trajectory of atarv /)( 0  .  On the 

other hand, by geometry the rms angular displacement to the side obeys both )(/ xx   

and )/()( 0 arx  .  Setting these equal, and by the definition of D  in (15)  
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Compared with the mean traversal time sta 01.0  this is a relative error of 0.25 or 25%.  

Finally, the information level (8) in each such traversal time is                                                                                                                       

262

0 1016.0)(/1)(  sttI a .                                                            (23)                

A corroborating scaffolding effect 

    The prediction (16) that either 1 (say RAS), or 2 (say RAS and RAF), or 3 (RAS, RAF 

and MEK), or 4 (RAS, RAF, MEK and ERK) types of protein travel together is verified 

by a known „scaffolding‟ effect. Thus, although the MAPK pathway is typically 

portrayed as a sequence of interactions among well mixed proteins, it appears that 

efficient phosphorylation of one protein by the kinase that precedes it in the sequence is 

achieved by scaffolding proteins that bind RAF, MEK and ERK together into a large 

molecular complex. Thus, during much of the transit from the CM to the NM, these 



proteins appear to travel together. This can be in a cloud-like or, perhaps, mutually 

scaffolded association. 

Protein Correlations 

     Our picture of a pulsed cloud of like proteins traveling together toward the nucleus is 

substantiated by studies of protein correlation in organelles of the cell. Thus [27] 

“Proteins in eukaryotic cells are organized according to their
 
functions within a dynamic 

network of membranes. Localization
 
is therefore paramount in ... processes occurring in 

subcellular
 
compartments.”  A correlation in time accompanies such spatial localization, 

as shown by elution time ion sequencing [28].  MEK and ERK2 proteins, in particular, 

were experimentally found to correlate [29]. 

     Such correlation also permits a necessary cross-talk to occur between the different 

limbs of a protein pathway.  A major contributor to cross-talk is the phosphorylation of a 

protein in one pathway by a protein from another pathway. This causes the activity in the 

1st pathway to increase the activity of the 2
nd

. 

Narrow Mean Width of Messenger Protein Pulse 

     Finally, the very brief transit time at 0.01s does not permit a substantial random 

component to the spatial motion. The diffusion formula (15) gives a root-mean square 

diffusion distance  =1 micron. Hence, were the motion undirected, in our directed 

transit time ta 0.01s the protein scaffold would move but 1 micron.  This is in any 

direction, e.g. toward the nucleus (also see next subsection) but also sideways.  The latter 

defines a minimum width of the protein scaffold emanating from one CM receptor. This 

is   ;212 micronmicron   i.e about 20% of the width 2r0 = 25 = 10 micron of the 

cell.  With multiple adjacent protein sources the pulse would be wider yet, so the 20% 



value represents a minimum scaffolding width. 

Indicators of whether a cell obeys maximum, or minimum, information  

          Cells have been postulated to be in states of extreme information during their 

growth and regulation. The information extremum is a maximum (13) in functioning 

cells; or a minimum (9) in cancer cells. One indicator of which respective alternative will 

hold appears to be whether the fundamental unit of growth is a multicellular organism or 

a single cell. Another indicator is that, in cancer, the EGFR pathway is commonly 

upregulated. That is, at least one component of the pathway is upregulated in 60 to 80% 

of cancers. This is reasonable since this pathway controls proliferation and survival. But 

the specific protein to be upregulated is something that has not been addressed: Mutations 

in EGFR, RAS, and RAF are commonly observed in cancer and they are regarded as 

“oncogenes”.  However, mutations in MEK and ERK are never seen in cancer. Thus, the 

presence or absence of MEK and ERK seems to have importance as to whether the cell is 

attaining maximum, or minimum, information. The nature and degree of the importance 

currently unknown. 

Summary 

     It was shown that mathematically requiring cell growth to obey a principle of extreme 

information gives rise to long-known laws of biological growth, such as the Lotka-

Volterra equations [2],[3] and the quarter-integer power laws of allometry [4],[5]. It also 

gives rise to clinically confirmed predictions of in situ cancer growth (10), and of  

messenger protein pathway flux values (16) and trajectories (A6) (in Appendix A) in 

normal cells. For example, the time t -dependent growth law (10) for in situ cancer mass 

)(tm  results from a requirement of minimum temporal information. This is a simple 



power law  )/()1()( 1 TtTtm  , whereT is the time between routine screenings for 

the existence of cancer in the patient, and ...,618.1  the Fibonacci golden mean.  The 

minimized level of information level so obtained is given by (11) as .0902.11 2 TI   

This, in turn, determines the minimum possible root mean-square error in estimated onset 

time of the cancer at (12) as .3003.0min Te    

     Alternatively, assuming maximum spatial information transmittance to the NM 

defines the protein trajectories in normal cells. The proteins are modeled as traveling 

from effectively a point 0x on a CM receptor toward a corresponding ideal position 0x  

the NM. The proteins travel as a scaffold whose minimum width is 

  ;212 micronmicron   i.e about 20% of the width 2r0 = 25 = 10 micron of the cell.  

The motion is mainly directed, rather than diffusive, and arises out of a shielded Coulomb 

force field exerted by positive charge on the NM. Using classical mechanics, the resulting 

levels of protein particle flux F  at the NM are found for various values of the Debye-

Huckel parameter 0k . This is plotted in Fig. 3 (after being derived at Eqs. (A6)-(A9) in 

Appendix A). Also, the spatial information )( 0xI is found to be proportional to this flux  

F at Eq. (15). In conformity with our thesis of maximized information, the maximum 

value of )( 0xII   is computed at Eq. (17) as 241083.2  m .  In turn, this predicts the 

rms error in the estimated initial position of the messenger on the CM to be value (18) of 

me 3

min 1094.5  . Relative to the NM size of ma 32   (Table 1), this is about a 

0.1% error, very small.  



     This figure also predicts a net protein pathway consisting of not more than 3-4 

constituents, which is obeyed by the EFGR pathway. In agreement, the latter protein is 

also of a size found following Eq. (21).   

     Also, arrival times at the NM are found to occur with a level of accuracy (22) given 

by se 3

min 105.2  . This is comparable to the accuracy (18) of m31094.5  for 

positions.  The implication of such low errors in space and time is that these aspects of 

cell development are highly developed, lending themselves to effective processing by a 

sophisticated program of processing by the nucleus.  This program has the task of 

processing aN 28,000 arrival locations every traversal time sta 01.0  (see material 

between Eqs. (21) and (22) ).  However, such a high flux rate has the benefit of allowing 

very effective processing of information, e.g. highly accurate averaging, and is consistent 

with an efficiently operating system.   

     As we saw, there is overall good agreement between theory and experiment in the 

preceding work. This lends plausibility to the working hypothesis that living cells, 

whether functional or cancerous, obey a principle of extreme Fisher information. 

     As was discussed, the presence or absence of MEK and ERK pathways seems to have 

strong bearing on whether the information state of the cell is at a maximum or a 

minimum.    

. 

Discussion 

     The idea of seeking a cross-disciplinary variational principle that could predict both 

physical and biological effects was proposed some 40 years ago by the population 

biologists Crow and Kimura [30] and, even before them, by Delbruck [32]. More 



recently, the physicist E.T. Jaynes [31] proposed the use of a principle of maximum 

entropy for deriving all statistical laws of nature. As indicated here, this goal is now met 

by the use of Fisher information and the Fisher-based EPI principle [2-5,7]. Other 

possible information-based candidates [33] have been proposed, but not yet shown to 

meet the broad requirement.  Apparently the laws of nature are laws of order [9]; and 

therefore, by the correspondence (4) between information I and order R , are defined by 

extreme levels of Fisher information.   
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Appendix A 

Newtonian model for protein trajectories 

     The following model is defined and analyzed in depth in [12]. Here we only need 

define its main features.: 

     (1) The messenger proteins are free to diffuse [17] in the cytoplasm between the CM 

and NM. Also, the major time expenditure of the trajectory of a messenger protein is 

while in the cell cytoplasm, as compared with much briefer times in microtubules and 

vesicles.  The assumption of free diffusion is consistent with published observations and 

is in distinction to movement of recently synthesized proteins via microtubules and 

vesicles.  



     (2) Although the nucleus can be located eccentrically within the cell, we assume the 

NM and CM to be concentric spheres, of respective radii ,, 0rrar   as in Fig. 4. 

 

 

 

 

 

 

 

 

 

Fig. 4: Spherical model of cell 

     (3) The cell is that of a typical human organ, with the parameters
2
 in Table 1.  

     (4) The valence z (or number of free electrons) of each protein is allowed to be some 

function z(t) of the time, for example 

z(t)=z₀+6p0t, with z₀=2, where p₀=1/sec = 3600/hr                    (A1) 

is an average phosphorylation rate [18].
  
The factor 6 arises since phosphorylations tend 

to occur sporadically in time, each adding about 3 phosphates, or 3z0 = 6 negative 

charges,  

CM radius 0r  5 micron 

NM radius a 3 micron (Note: %60/ 0 ra  for mammals) 

Cytoplasm dielectric const.  10

0 101.760   F/m 



Thermal energy  kBT 4.14 2110 J 

Positive charge on nucleus NMQ  C11103.0   (Coulomb) 

Viscosity   of cytoplasm 310  (water) 

Reynolds number 0R  4.0(462 nm) 

Table 1. Parameters of the cell 

to the messenger protein. We assume that initially, at/near the CM, the protein (e.g., 

mammalian thioredoxin) uptakes
 
z0 = 2 electron charges [19].  

     (5) Friction with the cytoplasm exerts a drag effect on each protein, where the drag  

coefficient K is a function [17] 

.1046 3/13/193/1

0 zzzRK                                              (A2) 

This assumes each protein to consist of a chain of 462 amino acids, typical of a human 

protein. The resulting drag force is  

,
dt

dr
KFD                                                                                    (A3) 

with dr/dt the velocity.   

Theoretical field strength values within cytoplasm 

          A major component of the model is the presence of an intracytoplasmic electric 

field. The field is due to negatively charged proteins in the cytoplasm and the positive 

charge QNM on the NM. The field causes each protein, of negative charge z(t)q, to be 

attracted toward the nucleus and shielded by other proteins (see below). Typically, 

environmental information is passed through the cell wall to messenger proteins through 

phosphorylation.  A messenger protein is “activated” by addition of a phosphate to a 

specific amino acid by a kinase that is typically a messenger protein more proximal in the 



information pathway. Each phosphorylation of the protein typically converts it to a 

specific kinase acting on the next protein in the sequence. Interestingly, phosphorylation 

also adds negative charge to the protein. In turn, such negative charge allows the protein 

to interact with, and be accelerated by, the intracytoplasmic electric field (found next).  

      Realistically [20] a messenger protein‟s force of attraction toward the NM is partially 

screened by the other proteins and ions that travel with it. With   the total 

number/volume of these charged particles in the cytoplasm, the result is a screened 

Coulomb law of attraction to the nucleus. This obeys 
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                       Coul.  Screening term  

where E(r) is the force/charge or field strength at position r.   

Debye-Huckel screening parameter 

     By (12), the net force is the product of a Coulomb 2/1 r  law with a screening term 

whose strength is governed by k0 , the Debye-Huckel screening parameter.  Its reciprocal 

is the screening length l0 .  

     Eq. (12) shows that k0  depends upon the total density   of proteins within the cell.  In 

turn, the latter increases with the number of protein types that are within the cell.  Typical 

messenger proteins are RAS, RAF, MEK and ERK.  The value of k0 then depends upon 

the number of protein types that are within the cell. Values of k0  are found on this basis 

(in Appendix S2 of [16]) for the simultaneous presence of either: 1 (say RAS), or 2 (say 

RAS and RAF), or 3 (RAS, RAF and MEK), 4 (RAS, RAF, MEK and ERK), or 9, 16, 

36, 100, 400, or all possible protein classes within the cell. These are the respective 



values 

                k0 = 1.0, 1.4, 1.7, 2.0, 3.0, 4.0, 6.0, 10, 20, and 141.0×10
6
m⁻¹.              (A5) 

Resulting theoretical field strength curves )(rE  

The corresponding E(r) curves were calculated in [16], showing the degree to which 

the unscreened field is forced down by the screening term in (A4) through the Debye 

parameter k0 . As k0  increases there is an increase in the number of protein classes, and 

hence number of proteins, that simultaneously move through the cytoplasm.  These 

proteins move as a distinct cloud or scaffold through the cytoplasm. 

Agreement of theory with experiment 

The curve of )(rE  for the value of k0  = 1.7 10
6 

 gives )(rE values that agree fairly well  

with measured field values [21]. By (A5), this holds for a scenario where but three types 

of protein are moving together within the cytoplasm. With more protein types present, 

and therefore higher , by the 2
nd

 Eq. (A4) parameter k0 increases, and these give 

progressively lower curves )(rE . The lowest, for 6

0 100.141 k m
-1

, holds when all 

possible protein types are moving together toward the nucleus. The resulting )(rE values 

show negligible attraction, and very low information transfer, to the nucleus. 

Negligible charge screening by inorganic ions 
 

     A novel and major assumption of the preceding model is that the Coulomb shielding 

of the NM is principally due to organic ions, in particular a cloud of proteins. This 

assumes the absence of  possible contributions due to mobile inorganic ions in the 

cytoplasm, such as K
+
 and Cl2. Indeed, including these in the Debye-Huckel effect would 

give an )(rE  field extending only distances l0 = 1 to 2 nm from the membrane. These l0 

correspond to values k0 10
9
 m

-1
 , giving effectively negligible field values. The proteins 



would experience virtually zero force of attraction to the NM, negating our thesis that 

their motion there is principally due to Coulomb attraction. 

     We propose that, in fact, these inorganic ions do not effectively attenuate the E  field. 

Instead the ions freely pass through the pores of the NM, and with a motion fast enough 

to not effectively shield the NM charge. This relies on the following effects. For an ion to 

speedily get through an NM pore, it should be narrower in diameter than the pore 

diameter. A Cl
-
 ion has a diameter of 181 pm (picometer), K

+
 ion of 138 pm [22]. By 

comparison, average pore diameter in NM= 90 nm [23]. This is about 500 times that of  

the Cl
-
 ion, allowing multiple ions to simultaneously pass through the pore. Finally, the 

relaxation time to thermal equilibrium in liver cells measured experimentally ranges from 

about 0.1 to 1 microseconds [24]. By comparison, RNA molecules, which are much 

larger than the ions but do possess charge, pass through 1.5 nm wide pores of carbon 

nanotube membranes in 10 ns (nanosecond) [25]. This is one thousandth, or less, of the 

above equilibrium time for liver cells. The result is effectively no Coulomb shielding by 

the ions.  

Analysis of protein trajectories 

     Using Newton‟s 2
nd

 law, the screened Coulomb force law (A4), a drag force linear in 

the particle velocity and the usual „terminal velocity‟ approximation for high-drag media,  

the trajectory of a typical protein obeys [16] 
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Also, Ei is the exponential integral function.      



     Solution (A6) indicates that the point k0 =1.7×10
6
 corresponds to a transit time ta 

0.01s.  This will be found to describe as well the optimum scenario from the standpoint 

of information transmission to the NM.  First, a preliminary quantity is needed.  

Particle flux F 

   A basic quantity defining particle transport is the particle flux F . This is the number 

N  of protein particles traversing from CM to NM per unit area A  of the NM per unit 

time t ,  

2

/

at

N

At

N

A

dtdN
F

aa 
                                                                         (A8) 

This assumes dtdN / is approximately constant over a time interval ),0( at . Also, A  is 

the cross sectional area of the spherical NM, approximately value 2a . For later use, the 

flux may also be expressed in terms of the particle density   as 

          atarvF /0   .                                                                         (A9) 

This is handy since it allows the flux to be computed from quantities that have previously 

been quantified using Table 1, the value atatt  )(  in Eq. (A6), and Appendix S2 of 

[16]. It is plotted as Fig.2 in the text of this paper. 

Linear relation between information I  and protein flux F at NM 

     The overall hypothesis is that, for this functional cell, the information is to be a 

maximum.  But, information about what parameter?   

     Let N proteins leave essentially one point on the CM and move to the NM during the 

transit time ta . Denote as x0 the ideal position on the NM of the nth such protein.  The 

ideal position is defined purely by the shielded Coulomb law previously considered. The 



position 0x  is „ideal‟ in that it follows some program of optimum cell growth with time.  

However, realistically, the protein‟s position on the NM suffers from an added random 

perturbation due to undirected diffusion by the cytoplasmic medium through which it 

travels. This degrades its motion, causing it to suffer a random sideways excursion xn, 

n=1,…,N. Therefore the total excursion of the protein is  

                                     ,0 nn xxy                                              (A10) 

with x  random according to some law ).(xp  This probability law then, defines a level of 

Fisher information [Eq. (6) of text] about the ideal position 0x  of the nth protein.  Our 

hypothesis is that this information level is to be a maximum value.   

     How may it be computed? Assume that the probability law on the random xn at least 

approximates any member of the family of exponential distributions, (defined above Eq. 

(8) of the text) with variance 2 .   As was discussed, the family has widespread 

application. Conveniently, these all give information 2/1 I as the value in any one 

experimental position yn on the NM. Does I  relate to F? 

     Let the N  positions xn be processed, in some presently unknown way, by the NM so 

as to estimate the ideal position 0x .  By likelihood theory [10-12], the maximum 

likelihood estimate of 0x  is the arithmetic mean of the total excursions yn , and the 

resulting error in a reading obeys ./22 Ne    Also, by the additivity of the information, 

the N independent readings give a total information  

                             2/NI  .                                                              (A11)       

The well-known
 
diffusion formula for random walk [26] expresses 

                       aDt22  , with constant D = 5×10⁻¹¹m²/s                             (A12) 



in cytoplasm.  Thus,   is the standard deviation, or rms fluctuation, due to the diffusion 

of any one protein during the transit time at  through the cytoplasm.  

      Note: It is important to distinguish between the preceding rms fluctuation    of one 

protein and the mean fluctuation of the estimated value of the ideal protein position on 

the NM.  These are not the same. The latter estimate results from optimally processing all 

detected protein positions for their theoretical mean.  The resulting rms error mine is 

therefore much smaller than  .  It is computed below. 

     From (A12), 

                     F
At

N

A

N

tA

I

tA

I
D

aaa











1
2

2

22




.                                (A13) 

The second equality is by (A11), and the last is by definition (A8).   Thus, from the outer 

equality, 

                                                    .
2

F
D

A
I 








                                              (A14)                                                                     

This relation is discussed and used in the main text. 
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