The Evolution of the Cell State Splitter: Motility to Embryogenesis Presented in the International **Embryo Physics Course** http://www.embryophysics.org July 21, 2010 By Dr. Natalie K. Björklund-Gordon, BSC, PhD Silver Bog Research silverbogresearch@mts.net

Embryogenesis: The Fundamental Problem *Given a spherical cow....* 



#### Fundamental Problem

- Go from one cell to many cells with many different functions.
- Get the different cells into
  - The right place The right time The right numbers



## Normal mammalian development

- 1. Fertilized egg goes through multiple cell divisions to form a loose ball.
- 2. Cells on the outside of the ball form the trophoblast (future placenta, membranes)
- 3. Inner cells form inner cell mass which will be the embryo proper.
- 4. Embryo forms three basic cell layers
  - 1. Endoderm
  - 2. Mesoderm
  - 3. Ectoderm

## Gastrulation

 Endoderm and mesoderm is tucked inside
Ectoderm stretches to cover the entire outside.

#### Neurulation

- Ectoderm forms all cells of the skin, neural tissue, brain, pigment cells, sweat glands
- 2. One half of ectoderm becomes neural tissue
- 3. One half becomes epithelial tissue
- 4. Neural ectoderm forms flat plate
- 5. Flat plate of neural cell sinks in the middle and the edges rise and join to form a tube.
- 6. Tube becomes fold to form brain, spinal cord

# **Ectoderm Differentiation**



# Apical end of ectoderm cell



# The Cell State Splitter Model

#### • Cell state splitter is an organelle

- Microtubules
- Intermediate filaments
- Actin filaments
- Microtubules exert steady force by polymerization
- Actin filaments in a ring exert a force that is proportional with the diameter (thick ring large force, thin ring less force)
- Intermediate filaments are elastic (resist change)



#### Force balance

a)  $F_{microfilament} > -F_{microtubles} = contraction$ b)  $F_{microfilament} < -F_{microtubles} = expansion$ c)  $F_{microfilament} = -F_{microtubles}$ 

Bistable organelle – resolve to one of possible two states

## Ectoderm Differentiation



# A bit of embryological jargon

- Induction = signal from cell to cell and from exterior of cell into nucleus that it is time to change into a new cell.
- ⊙ (Determination)
- Differentiation = process of changing from one cell type to another.
- (Begins with changes in gene expression.)
- Cell state splitter = induction
- Nuclear state splitter = differentiation

## Advantages to our model

- Requires physics mechanical forces
- Mechanical forces trigger either an expansion or a contraction in a localized area.
- Genome responds to mechanical signal.
- Genome makes next cell state splitter and waits for next signal.
- Cell need not "know" anything going on around it or what any other cell is doing.
  - No reacting, reading, assessing, mediating, influencing, communicating, controlling, knowing required by any cell.

#### Initiation of labor



Initiation includes both mechanical (especially shear stress) of myometrium and chorioamniotic interface, hormonal signals, signals from the immune system via release of specific cytokine.

### Myometrium

A signal, likely mechanical, perhaps chemical, perhaps both (IL-1 $\beta$  or TNF- $\alpha$ ), occurs due to changes in the cervix. The result is an entire set of new proteins is expressed as labor begins.

- 1) Ion channels (regulate membrane potential)
- 2) Agonist receptors to compounds that control the strength of labor contractions
- 3) GAP junctions to allow coordinated cell-cell coupling of the uterus.
- 4) cAMP down regulated



UtSM-CS04 cells (P3) prepared by the explant method stain for markers of smooth muscle cells: αsmooth muscle actin and calponin.



 $\alpha$ -smooth muscle actin



calponin





## Where Did This System First Evolve From?



http://www.microscopyu.com/staticgallery/dxm1200/images/amoeba.jpg

## Where Did Microtubules First Evolve From?



http://www.micro.cornell.edu/cals/micro/research/labs/angert-lab/images/binary\_fission.jpg

#### Divide Now? Yes or No.



Copyright © 2005 Nature Publishing Group Nature Reviews | Molecular Cell Biology

http://www.micro.cornell.edu/cals/micro/research/labs/angert-lab/images/binary\_fission.jpg



## Divide Now? Yes or No.

FtsZ = early tubulin

# Divide and make a spore instead? Yes or No.



#### Divide and make two cells types





### Where Did Actin Come From?



Copyright 9 2002, Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter; Copyright 9 1983, 1989, 1994, Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson

## Move towards, Move Away?



Copyright 9 2002, Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter; Copyright 9 1983, 1989, 1994, Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson

# Actin Contraction or Microtubule Elongation?









#### Microtubules present - Signal Sent



#### Microtubules absent - No Signal

# All signal transduction systems, evolved from "move to, move away from" "divide, don't divide".

- For the complex multicellular organism, the environment to which the cell responds now includes the environment created by all the cells surrounding an individual cell and by that cell itself.
- The original and simple move away, move towards system, with cross talk, dependant on external stimulus has replaced the external stimuli with self-created and internalized stimuli.
- External stimuli cannot be controlled and regulated but self created internalized stimuli can be.

## Conclusion

- Signal transduction = nuclear state splitting
- Cytoskeleton is a mechanically sensitive structure responding to both internal and external signals.
- All signal transduction (changes in gene expression) require aggregates of proteins moving on and/or off the cytoskeleton.
- All these systems evolved from simple components required for cell division and motility in the early single protocelluar organism.
- Current understanding of biology which does not include the physical effects of cytoskeleton are inadequate

#### Take home message

• Follow the cytoskeleton, see what it is dong and everything else follows from that.