Multiscale Integration and Heuristics of Complex Physiological Phenomena

Presented at the Embryo Physics Course. Silver Bog, Second Life

Bradly Alicea Michigan State University

http://www.msu.edu/~aliceabr

http://syntheticdaisies.blogspot.com

Artificial Life XIII Conference

East Lansing, MI July, 2012

What is this Workshop About?

Recursive me! Giving this talk at HTDE 2012.

of

+ha

Deciduale

Classic Empirical Example of a "Hard-to-Define" Event

Classic Empirical Example of a "Hard-to-Define" Event

What makes this "hard-to-define"?

* lack of appropriate measures, analytical techniques?

* lack of context, understanding w.r.t. what results mean (synthesis)?

Does more data get us closer to an objective set of variables (empirically-speaking)?

LEFT: Merging multiple types, sources of data.

ABOVE: Complementary information (genegene interactions).

"From Brain to Behavior" is a hard-to-define problem!

Different Types of Hierarchy: organizational and spatial (temporal will be ignored for now):

- * Organizational (defined by specialization, role). Examples: social, ecological.
- * Spatial (defined by features, lengths). Examples: cities, continents.

Physiological systems (e.g. animal body) are a combination of the two:

* cells can form organs, systems with specialized components (renal, circulatory).

COURTESY: Power of 10 (Eames, YouTube)

Example from Brain-machine Interfaces (BMIs):

BMI systems with two components (Carmena, IEEE Spectrum, March 2012).

Two electrophysiological sources of information:

- * high-frequency signals (single unit recordings).
- * low-frequency signals (local field potentials).

How do these get fused together into a coherent control signal?

* multiscale problem, much mutual and independent information embedded in both scales

Scale (hierarchical level) Linking

Baeurle, S.A. (2009). Multiscale modeling of polymer materials using field-theoretic methodologies: a survey about recent developments. Journal of Mathematical Chemistry, 46, 363-426.

* using a single set of model parameters to describe data from multiple scales.

* multigrid techniques sometimes used for well-defined problems.

Scale (hierarchical level) Linking

Baeurle, S.A. (2009). Multiscale modeling of polymer materials using field-theoretic methodologies: a survey about recent developments. Journal of Mathematical Chemistry, 46, 363-426.

* using a single set of model parameters to describe data from multiple scales.

* multigrid techniques sometimes used for well-defined problems.

How do we link gene expression to cellular behavior? Cellular behavior to organismal behavior? Using a common currency?

Figure 1. Frontiers in Behavioral Neuroscience, 4(28), 1-9 (2010).

Consequences of modeling averages and extremes:

Extremely local scale: intracellular millieu, neurons.

* **example:** behaviors can vary widely between cells in a population, result in a coherent macro-state (population vector coding).

Figure 1. Frontiers in Behavioral Neuroscience, 4(28), 1-9 (2010).

Figure 3. Hormones and Behavior, 59(3), 399–406 (2011).

Consequences of modeling averages and extremes:

Extremely local scale: intracellular millieu, neurons.

* **example:** behaviors can vary widely between cells in a population, result in a coherent macro-state (population vector coding).

Extreme averaging: model of brain regions, brain states.

* **example:** a large number of electrophysiological, biochemical parameter values will result in an "emotion".

Will a "mean field model" work for scale linking? Average behavior at one scale may result from fluxes at another scale, different mechanisms at different scales.

* **example:** noise in gene expression can trigger changes in cellular state.

Computational-based approaches

Physiomic Modeling SBML, and FieldML:	using CellML	_,
Physiome Organs Tissues	Cells	
Signaling Metabolic pathways Metabolic pathways ATP Ugand binding, ATP Proteins cytokines Proteome Transcriptome, me	Cell cycle, motility, contraction, adhesion, secretion, sensory, transport Caroohydrates and lipids	
Genome	Nature Reviews Molecular Cell Biology	
(13)rease represent (13)rease (13)rease (13)rease (13)rease (13)rease (13)rease (14)rease (15)rease (Models are combined using ontologies (e.g. Bio PAX).)]
Image: sector	Challenge: complex models from separately- validated parts.	-

Computational-based approaches

Cellular Reprogramming as a Multiscale (temporal) Concept

Direct Reprogramming is a rare event:

1) cryptic populations: 1:10⁶ cells, small number of cell can expand (genetic drift-like).

2) efficiencies (infection): 0.0002 to 29%.

3) number of genes required to "reprogram": 4 out of 29,000 (human).

COURTESY: Stem Cell School (http://stemcellschool.com/)

Figure 1, Stadfeld, M. et.al, Cell Stem Cell, 2, 230-240, (2008).

Temporal Hierarchies (e.g. slow kinetics of reprogramming) vs.

Scope (when processes occur across spatial, organizational scales)

Temporal Hierarchies (e.g. slow kinetics of reprogramming) vs.

Scope (when processes occur across spatial, organizational scales)

Scale (e.g. 10¹, 10², 10³) vs. Scope (e.g. 2nd, 3rd, and 4th-order interactions).

Babu, Bio-Inspired Computing and Communication LNCS 5151, 162-171 (2008).

Scope (not spatial scale *per se*, but hierarchical):

* expression of single gene can lead to a cascade.

* a cascade produces a gene expression network.

How to Model the Emergence of Biological "Scale": from trophic approaches to first-mover principles

Trophic Model

Exchange of energy and information between scales (see Alicea, Hierarchies of Biocomplexity: modeling life's energetic complexity. arXiv:0810.4547):

TOP-DOWN:

- * constraint-based (information) interactions between scales.
- * enforces trophic dependency (food web, complex dynamics).

Trophic Model

Exchange of energy and information between scales (see Alicea, Hierarchies of Biocomplexity: modeling life's energetic complexity. arXiv:0810.4547):

TOP-DOWN:

- * constraint-based (information) interactions between scales.
- * enforces trophic dependency (food web, complex dynamics).

BOTTOM-UP:

- * resource-based (energetic) interactions between scales.
- * trophic relationship (discount between scales).

Trophic Model

Exchange of energy and information between scales (see Alicea, Hierarchies of Biocomplexity: modeling life's energetic complexity. arXiv:0810.4547):

TOP-DOWN:

- * constraint-based (information) interactions between scales.
- * enforces trophic dependency (food web, complex dynamics).

BOTTOM-UP:

- * resource-based (energetic) interactions between scales.
- * trophic relationship (discount between scales).

PREDATOR-PREY-LIKE INTERACTIONS:

- * coevolution (interdependence).
- * extended to other systems (not explicitly consumptive).

Multiscale Decision-making Models (autonomous agents):

Wernz, C. and Deshmukh, A. (2010). Multiscale Decision-Making: Bridging Organizational Scales in Systems with Distributed Decision-Makers, European Journal of Operational Research, 202, 828-840.

Hierarchical Interaction of Agents:

* behaviors coupled (e.g. short-term to long-term, local-to-global).

Hierarchical Production Planning (Hax and Meal, 1975):

* higher levels "constrain" lower levels (organizational hierarchy).

* top-down and bottom-up interactions can be modeled as a two player game.

Multiscale Decision-making Models (autonomous agents):

Wernz, C. and Deshmukh, A. (2010). Multiscale Decision-Making: Bridging Organizational Scales in Systems with Distributed Decision-Makers, European Journal of Operational Research, 202, 828-840.

Multiobjective Fitness Approach:

- * fitness (quasi-optimization) at multiple scales, according to multiple objectives.
- * cells optimize their survivability in a microenvironment.
- * tissues and organs (coupled to this) have separate objective (perform physiological function).

Multiobjective Fitness Approach:

* fitness (quasi-optimization) at multiple scales, according to multiple objectives.

* cells optimize their survivability in a microenvironment.

* tissues and organs (coupled to this) have separate objective (perform physiological function)

Multiobjective Optimization: rather than single solution based on one criterion, find best trade-offs that satisfy constraints (g_1, g_2) at all scales (global optimum).

Multiobjective Fitness Approach:

* fitness (quasi-optimization) at multiple scales, according to multiple objectives.

* cells optimize their survivability in a microenvironment.

* tissues and organs (coupled to this) have separate objective (perform physiological function)

Multiobjective Optimization: rather than single solution based on one criterion, find best trade-offs that satisfy constraints (g_1, g_2) at all scales (global optimum).

Two-level problem (bi-level linear programming). Each level is a local optimum in bivariate

Each partition (cells, f_1 and tissues, f_2) is a local optimization processes (P_1 , P_2).

FORMALISM FROM: Migdalas, Parlados, and Varbrand Multilevel Optimization (1998).
$$\begin{split} & [P_1] = \min_{x^1} f_1(x^1, x^2) \\ & \text{subject to } g_1(x^1, x^2, \dots, x^k) \leq 0 \\ & [P_2] = \min_{x^2} f_2(x^1, x^2) \\ & \text{subject to } g_2(x^1, x^2, \dots, x^k) \leq 0 \end{split}$$

Examples of control within and between hierarchical levels in the brain:

* in this case, we are interested in the emergence of scale (organizational).

Examples of control within and between hierarchical levels in the brain:

* in this case, we are interested in the emergence of scale (organizational).

Cell populations A and B are countering each others' feedforward signals.

* populations counter each other (if signals are matched).

Brain Region A has taken on the role of coordinator in the network:

* becomes an autoregulatory loop.

$$[P_{1}] = \min_{x^{1}} f_{1}(x^{1}, x^{2})$$
$$[P_{2}] = \min_{x^{2}} f_{2}(x^{1}, x^{2})$$
$$[S_{1}] = \min_{s^{1}} f_{1}(x^{1}, x^{2}, x^{3})$$
$$[S_{2}] = \min_{s^{2}} f_{2}(x^{1}, x^{2}, x^{3})$$

Model multiobjective optimization process as a leader-follower (Stackleberg) game:

- * given finite behaviors (strategies), payoff matrix determines outcomes.
- * players (levels) will converge upon strategic equilibria.

$$[P_{1}] = \min_{x^{1}} f_{1}(x^{1}, x^{2})$$
$$[P_{2}] = \min_{x^{2}} f_{2}(x^{1}, x^{2})$$
$$[S_{1}] = \min_{s^{1}} f_{1}(x^{1}, x^{2}, x^{3})$$
$$[S_{2}] = \min_{s^{2}} f_{2}(x^{1}, x^{2}, x^{3})$$

Model multiobjective optimization process as a leader-follower (Stackleberg) game:

- * given finite behaviors (strategies), payoff matrix determines outcomes.
- * players (levels) will converge upon strategic equilibria.

		f_1				
			<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	
S ₂	f_2	<i>x</i> ₁				
		<i>x</i> ₂				
		<i>x</i> ₃				

 $[L_1] = \min_{x^1} f_1(x^1(t_1, \dots, t_n), x^2(t_1, \dots, t_n))$ $[L_2] = \min_{x^2} f_2(x^1(t_1, \dots, t_n), x^2(t_1, \dots, t_n))$

$$[P_1] = \min_{x^1} f_1(x^1, x^2)$$
$$[P_2] = \min_{x^2} f_2(x^1, x^2)$$
$$[S_1] = \min_{s^1} f_1(x^1, x^2, x^3)$$
$$[S_2] = \min_{s^2} f_2(x^1, x^2, x^3)$$

FORMALISM FROM: Migdalas, Parlados, and Varbrand Multilevel Optimization (1998).

Stackleberg (first-mover) equilibria:

LEADER chooses initial behavior and/or output level, moves towards P_1 .

FOLLOWER constrained by behavior of leader, chooses behavior and/or output level that moves towards P_2 .

Model multiobjective optimization process as a leader-follower (Stackleberg) game:

- * given finite behaviors (strategies), payoff matrix determines outcomes.
- * players (levels) will converge upon strategic equilibria.

$$[L_1] = \min_{x^1} f_1(x^1(t_1, \dots, t_n), x^2(t_1, \dots, t_n))$$
$$[L_2] = \min_{x^2} f_2(x^1(t_1, \dots, t_n), x^2(t_1, \dots, t_n))$$

Biological Multiscale Complexity and Adaptation as "open-ended, first-mover evolution"

Open-ended Evolution:

1) Enabling conditions for "open-ended evolution". Biology and Philosophy, 23(1), 67-85 (2008).

2) Degeneracy: a link between evolvability, robustness and complexity in biological systems Theoretical Biology and Medical Modelling, 7, 1 (2010).

* optimization criteria are always changing.

* end product is not determined *a priori.* Remember, organism shaped by environment.

* enables degeneracy, which is a form of phenotypic robustness.

Biological Multiscale Complexity and Adaptation as "open-ended, first-mover evolution"

Open-ended Evolution:

1) Enabling conditions for "open-ended evolution". Biology and Philosophy, 23(1), 67-85 (2008).

2) Degeneracy: a link between evolvability, robustness and complexity in biological systems Theoretical Biology and Medical Modelling, 7, 1 (2010).

* optimization criteria are always changing.

* end product is not determined *a priori.* Remember, organism shaped by environment.

* enables degeneracy, which is a form of phenotypic robustness.

Individual Behavior: first-mover random walk, responds to local selective pressures only.

Performed by all cells in parallel

Biological Multiscale Complexity and Adaptation as "open-ended, first-mover evolution"

Open-ended Evolution:

1) Enabling conditions for "open-ended evolution". Biology and Philosophy, 23(1), 67-85 (2008).

2) Degeneracy: a link between evolvability, robustness and complexity in biological systems Theoretical Biology and Medical Modelling, 7, 1 (2010).

* optimization criteria are always changing.

* end product is not determined a *priori.* Remember, organism shaped by environment.

* enables degeneracy, which is a form of phenotypic robustness.

Individual Behavior: first-mover random walk, responds to local selective pressures only.

Performed by all cells in parallel

Collective Behavior: second-mover directed walk, responds to local interactions, global constraints.

Consequence of interactions

Spatial restriction → patterns and functional partitioning

Emergence From "First-mover" Principles:

Suppose all cells are greedy and make the first move (mass action).....

* some cells get closer to optimum than others, these are more likely to be first-movers in subsequent interactions.

OR

* outcome is averaged over all individuals in a subpopulation (niche), which serves as a collective signal to the second-mover cells.

Over time, this organizes cells into layers, patterns, and other higher-order structures. "Symbiosis"-like (happens gradually, as a series of transitions in evolution).

* rate-limiting (e.g. liver does not subsume EVERY cell it interacts with).

* fractal (cells organized under organs, organs organized under organisms) process.

Hyperrestoration rule:

* a cell or a piece of tissue is perturbed (abnormal stresses)

* develops an active mechanical response directed towards restoring the initial amount of stress.

* performs this correction with overshoot (e.g. hysteretic response).

EXAMPLES: smooth sphericalization, edge curling (reactions to stretching at level of individual cells, but are tissue size- and shape-dependent).

Example where it does not explain the data:

Travisano et.al (2012, 2013): multicellularity in yeast.

Artificial + kin selection: pressure for "staying together" multicellularity among clonal (mother-daughter) cells.

Extension-Extension Positive feedback: new material intercalated in area perpendicular to stretching as a response to external stretching.

Contraction-Extension Positive feedback: movement of cells between poles of cell sheets as positive feedback (response to stretching forces).