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Concept of a Nest: 

 

Distributed representations: 

 

What makes this “hard-to-define”? 

* lack of appropriate measures, analytical techniques? 

 

* lack of context, understanding w.r.t. what results mean (synthesis)? 

Lin et.al Neural encoding of the 

concept of nest in the mouse brain. 

PNAS, 104(14), 6066-6071 (2007). 
 

Figure 1.A: transient “on” cells. 

Ishai et.al Distributed representation of 

objects in the human ventral visual 

pathway. PNAS, 96, 9379-9384 (1999). 
 

Figure 1. 



COURTESY: Figure 7, PLoS Biology, 10(4), 

E1001301 (2012). 

COURTESY: Figure 1, PLoS Computational 

Biology, 8(6), e1002559. 

LEFT: Merging multiple types, sources of 

data. 

 

ABOVE: Complementary information (gene-

gene interactions). 

Does more data get us closer to an 

objective set of variables (empirically-

speaking)? 



Unknowable? 

Morphometrics, Behavior (assays available, parameters known) 

Molecular Biology (assays available, parameters less well-known) 

“From Brain to Behavior” is a hard-to-define problem! 

Unknown mechanisms,  

undefined interactions,  

no unifying theory 

How do we unify these 

two scales? 

Is this a measurement  

problem? 

When is homogenization  

(e.g. averaging) appropriate? 

How did this complexity  

emerge? 



Organizational Spatial 

COURTESY: Power of 10 (Eames, YouTube) 

Different Types of Hierarchy: organizational and spatial (temporal will be ignored for now): 
 

* Organizational  (defined by specialization, role). Examples: social, ecological. 
 

* Spatial (defined by features, lengths). Examples: cities, continents. 

 

Physiological systems (e.g. animal body) are a combination of the two: 
 

* cells can form organs, systems with specialized components (renal, circulatory). 



Example from Brain-machine Interfaces (BMIs): 
 

BMI systems with two components (Carmena, IEEE Spectrum, March 2012). 

Two electrophysiological sources 

of information: 

 

* high-frequency signals (single 

unit recordings). 

 

* low-frequency signals (local field 
potentials). 

How do these get fused together 

into a coherent control signal? 

 

* multiscale problem, much mutual 

and independent information 

embedded in both scales 
Waldert et.al, Journal of Neuroscience, 28(4), 1000–1008 (2008). 



Infer model parameters from data (multiscalar data)    

DATA 

 

MODEL     PARAMETERS 

DATA DATA 

Scale (hierarchical level) Linking  
 

Baeurle, S.A. (2009). Multiscale modeling of polymer materials using field-theoretic 

methodologies: a survey about recent developments. Journal of Mathematical Chemistry, 46, 

363-426.  

* using a single set of model parameters to 

describe data from multiple scales. 
 

* multigrid techniques sometimes used for 

well-defined problems. 
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MODEL     PARAMETERS 

DATA DATA 

Scale (hierarchical level) Linking  
 

Baeurle, S.A. (2009). Multiscale modeling of polymer materials using field-theoretic 

methodologies: a survey about recent developments. Journal of Mathematical Chemistry, 46, 

363-426.  

* using a single set of model parameters to 

describe data from multiple scales. 
 

* multigrid techniques sometimes used for 

well-defined problems. 

 

How do we link gene expression to cellular 

behavior? Cellular behavior to organismal 

behavior? Using a common currency? 
Physiome project: Figure 1. Hunter and Borg, Nature 

Reviews Molecular Cell Biology, 4, 237-243 (2003) 



Consequences of modeling averages  

and extremes: 
 

Extremely local scale: intracellular millieu, neurons. 

 

* example: behaviors can vary widely between cells in a 

population, result in a coherent macro-state (population 

vector coding). 

Figure 1. Frontiers in Behavioral Neuroscience, 

4(28), 1-9 (2010). 



Consequences of modeling averages  

and extremes: 
 

Extremely local scale: intracellular millieu, neurons. 

 

* example: behaviors can vary widely between cells in a 

population, result in a coherent macro-state (population 

vector coding). 

 

 

Extreme averaging: model of brain regions, brain states. 

 

* example: a large number of electrophysiological, 

biochemical parameter values will result in an “emotion”. 

 

 

Will a “mean field model” work for scale linking? Average 

behavior at one scale may result from fluxes at another scale, 

different mechanisms at different scales. 

 

* example: noise in gene expression can trigger changes in 

cellular state. Figure 3. Hormones and Behavior, 59(3), 

399–406 (2011). 

Figure 1. Frontiers in Behavioral Neuroscience, 

4(28), 1-9 (2010). 



Computational-based approaches 

Physiomic Modeling using CellML, 

SBML, and FieldML: 

Hunter, IEEE Computer, 2006 

Models are 

combined using 

ontologies (e.g. 

Bio PAX). 

 

Challenge: 

complex models 

from separately- 

validated parts. 



Computational-based approaches 

Physiomic Modeling using CellML, 

SBML, and FieldML: 

Allen Brain Atlas (merging anatomy and 

gene expression): 

Hunter, IEEE Computer, 2006 

Models are 

combined using 

ontologies (e.g. 

Bio PAX). 

 

Challenge: 

complex models 

from separately- 

validated parts. 

Anatomical and gene expression data 

combined using co-registration techniques. 

 

* spatial hierarchy in the brain, organizational 

hierarchy based on connectivity and gene 

expression. 

 

* no explicit model of temporal hierarchy. 



Cellular Reprogramming as a Multiscale  

(temporal) Concept 

Direct Reprogramming is a rare event: 
 

1) cryptic populations: 1:106 cells, small number 
of cell can expand (genetic drift-like). 

 
 
2) efficiencies (infection): 0.0002 to 29%. 
 
 
3) number of genes required to “reprogram”: 4 
out of 29,000 (human). 

From Figure 2, Wernig et.al, Nature Biotechnology,  

26(8), 916-924 (2008). 

Figure 1, Stadfeld, M. et.al, Cell Stem Cell, 2, 230-240, (2008). 

COURTESY: Stem Cell School (http://stemcellschool.com/) 



Temporal Hierarchies (e.g. slow kinetics of reprogramming) 

vs. 

Scope (when processes occur across spatial, organizational scales) 
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Temporal Hierarchies (e.g. slow kinetics of reprogramming) 

vs. 

Scope (when processes occur across spatial, organizational scales) 
 

 

Stable, mature cell  

colonies (days, weeks) 

Structural Remodeling 

(days) 

Plasmid incorporation 

(hours, days) 

Transcription, Cell 

division (hours) 

Scope (not spatial scale per se, 

but hierarchical): 

 

* expression of single gene can 

lead to a cascade. 

 

* a cascade produces a gene 

expression network. 
Babu, Bio-Inspired Computing and Communication LNCS 5151, 162-171 (2008). 

Scale (e.g. 101, 102, 103) vs. Scope (e.g. 2nd, 3rd, and 4th-order interactions). 



How to Model the Emergence of 

Biological “Scale”: from trophic 

approaches to first-mover principles 



Trophic Model Exchange of energy and information between scales 

(see Alicea, Hierarchies of Biocomplexity: modeling 

life’s energetic complexity. arXiv:0810.4547): 

 

TOP-DOWN: 
 

* constraint-based (information) interactions between 

scales. 
 

* enforces trophic dependency (food web, complex 

dynamics). 
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Trophic Model Exchange of energy and information between scales 

(see Alicea, Hierarchies of Biocomplexity: modeling 

life’s energetic complexity. arXiv:0810.4547): 

 

TOP-DOWN: 
 

* constraint-based (information) interactions between 

scales. 
 

* enforces trophic dependency (food web, complex 

dynamics). 

 

BOTTOM-UP: 
 

* resource-based (energetic) interactions between 

scales. 
 

* trophic relationship (discount between scales). 

 

PREDATOR-PREY-LIKE INTERACTIONS: 
 

* coevolution (interdependence). 
 

* extended to other systems (not explicitly 

consumptive). 

ORGANISM 

CELL 

COLONIES 

ORGANS 

CELLS 



Multiscale Decision-making Models (autonomous agents): 
 

Wernz, C. and Deshmukh, A. (2010). Multiscale Decision-Making: Bridging Organizational 

Scales in Systems with Distributed Decision-Makers, European Journal of Operational 

Research, 202, 828-840.  

Hierarchical Interaction of Agents: 

 

* behaviors coupled (e.g. short-term to 

long-term, local-to-global). 

 

Hierarchical Production Planning (Hax and 

Meal, 1975): 

 

* higher levels “constrain” lower levels 

(organizational hierarchy). 

 

 

* top-down and bottom-up interactions can 

be modeled as a two player game. 



Multiscale Decision-making Models (autonomous agents): 
 

Wernz, C. and Deshmukh, A. (2010). Multiscale Decision-Making: Bridging Organizational 

Scales in Systems with Distributed Decision-Makers, European Journal of Operational 

Research, 202, 828-840.  

Production  

Planner 

(SUP) 

Material 

Buyer 

(INF) 

OUTPUT WORK 

SUPPORT 

(FB) 

Two-agent Interaction 

* magnitude of influence = state to which 

agent moves (faster vs. slower). 

 

* reward and influence of other agent = state. 

Two production 

modes: faster 

vs. slower. 

Hierarchical Interaction of Agents: 

 

* behaviors coupled (e.g. short-term to 

long-term, local-to-global). 

 

Hierarchical Production Planning (Hax and 

Meal, 1975): 

 

* higher levels “constrain” lower levels 

(organizational hierarchy). 

 

 

* top-down and bottom-up interactions can 

be modeled as a two player game. 



Multiobjective Fitness Approach: 
 

* fitness (quasi-optimization) at multiple scales, according to multiple objectives. 

 

* cells optimize their survivability in a microenvironment. 

 

* tissues and organs (coupled to this) have separate objective (perform physiological function).  
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Multiobjective Fitness Approach: 
 

* fitness (quasi-optimization) at multiple scales, according to multiple objectives. 

 

* cells optimize their survivability in a microenvironment. 

 

* tissues and organs (coupled to this) have separate objective (perform physiological function)  

 

Multiobjective Optimization: rather than single solution based on one criterion, find best 

trade-offs that satisfy constraints (g1, g2) at all scales (global optimum). 

Each partition (cells, f1 
and tissues, f2) is a 
local optimization 
processes (P1, P2). 

FORMALISM FROM: Migdalas, 
Parlados, and Varbrand   

Multilevel Optimization (1998). 



CROSS-INHIBITION 

(leaderless) 

FEEDBACK 

(leader emerges) 

BRAIN 
REGION A 

 

BRAIN 
REGION B 

CELL 
POPULATION 

A 

CELL 
POPULATION 

B 

Industrial Production: Wernz and 

Deshmukh (2010), European Journal of  

Operational Research, 202, 828-840.  

Honeybee Worker Swarms: Seeley et.al 

(2012), Science, 335, 108-111. 

(-) (-) (+) (-) 

(-) (+) 

Examples of control within and between hierarchical levels in the brain: 

 

* in this case, we are interested in the emergence of scale (organizational). 
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Industrial Production: Wernz and 

Deshmukh (2010), European Journal of  

Operational Research, 202, 828-840.  

Honeybee Worker Swarms: Seeley et.al 

(2012), Science, 335, 108-111. 

(-) (-) (+) (-) 

(-) (+) 

Examples of control within and between hierarchical levels in the brain: 
 
* in this case, we are interested in the emergence of scale (organizational). 

Cell populations A and B 

are countering each 

others’ feedforward 

signals. 

 

* populations counter each 

other (if signals are 

matched). 

 

 

 

Brain Region A has taken 

on the role of coordinator 

in the network: 

 

* becomes an 

autoregulatory loop. 



Model multiobjective optimization process as a 

leader-follower (Stackleberg) game: 

 

* given finite behaviors (strategies), payoff 

matrix determines outcomes. 

 

* players (levels) will converge upon strategic 

equilibria.  
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Model multiobjective optimization process as a 

leader-follower (Stackleberg) game: 

 

* given finite behaviors (strategies), payoff 

matrix determines outcomes. 

 

* players (levels) will converge upon strategic 

equilibria.  

S1 

S2 

Stackleberg (first-mover) 

equilibria: 
 

LEADER chooses initial behavior 

and/or output level, moves towards P1. 

 

 

FOLLOWER constrained by behavior 

of leader, chooses behavior and/or 

output level that moves towards P2. 

FORMALISM FROM: Migdalas, Parlados, and 
Varbrand   Multilevel Optimization (1998). 



Biological Multiscale Complexity and Adaptation as 

“open-ended, first-mover evolution” 

Open-ended Evolution:  
 

1)  Enabling conditions for "open-ended 

evolution". Biology and Philosophy, 23(1), 

67-85 (2008). 

 

2) Degeneracy: a link between evolvability, 

robustness and complexity in biological 

systems Theoretical Biology and Medical 

Modelling, 7, 1 (2010). 

 

* optimization criteria are always 

changing. 

 

* end product is not determined a 

priori. Remember, organism 

shaped by environment. 

 

* enables degeneracy, which is a 

form of phenotypic robustness. 
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Biological Multiscale Complexity and Adaptation as 

“open-ended, first-mover evolution” 

Open-ended Evolution:  
 

1)  Enabling conditions for "open-ended 

evolution". Biology and Philosophy, 23(1), 

67-85 (2008). 

 

2) Degeneracy: a link between evolvability, 

robustness and complexity in biological 

systems Theoretical Biology and Medical 

Modelling, 7, 1 (2010). 

 

* optimization criteria are always 

changing. 

 

* end product is not determined a 

priori. Remember, organism 

shaped by environment. 

 

* enables degeneracy, which is a 

form of phenotypic robustness. 

Individual Behavior: first-mover random walk, 
responds to local selective pressures only. 

Collective Behavior: second-mover directed 
walk, responds to local interactions, global 
constraints. 

Performed by all  

cells in parallel 

Consequence of  

interactions 

Spatial restriction   

patterns and functional 

partitioning 



Emergence From “First-mover” Principles: 
 

Suppose all cells are greedy and make the first move (mass action)…… 

 

* some cells get closer to optimum than others, these are more likely to be first-movers in 

subsequent interactions. 

 

OR 

 

* outcome is averaged over all individuals in a subpopulation (niche), which serves as a 

collective signal to the second-mover cells. 
 

 

 

Over time, this organizes cells into layers, patterns, and other higher-order structures. 

“Symbiosis”-like (happens gradually, as a series of transitions in evolution). 

 

* rate-limiting (e.g. liver does not subsume EVERY cell it interacts with). 

 

* fractal (cells organized under organs, organs organized under organisms) process.  



Final thoughts: linking processes 

with hierarchy 
 

Morphomechanical reactions  

(Beloussov, Chapter 2, 1998) 
 

* instances of morphogenesis, multilevel hierarchy of 

responses. 

EMBRYO 
Relaxation  
(dissection) 

Artificial  
stretching 

Spontaneous  
rolling 

Intercalation 
response 

Transversal  
folding 

Secondary  
relaxation 

STRESS (-) STRESS (+) 

T
IM

E
 

Sean Carroll’s 
addendum to King 
and Wilson, 1975. 

 
Genes and 
Phenotype 

How do first-mover interactions 
and hyperrestoration dynamics  

explain the emergence of 
hierarchies in development? 



Hyperrestoration rule:  
* a cell or a piece of tissue is perturbed 
(abnormal stresses) 
 

* develops an active mechanical response 
directed towards restoring the initial amount of 
stress. 
 

* performs this correction with overshoot (e.g. 
hysteretic response). 
 
EXAMPLES: smooth sphericalization, edge 
curling (reactions to stretching at level of 
individual cells, but are tissue size- and shape-
dependent). 

Extension-Extension Positive feedback: new material intercalated in area 
perpendicular to stretching as a response to external stretching. 
 
Contraction-Extension Positive feedback: movement of cells between poles of 
cell sheets as positive feedback (response to stretching forces). 

Example where it does not 

explain the data: 
 

Travisano et.al (2012, 2013): 

multicellularity in yeast. 

 

 

 

 

 
 

Artificial + kin selection: pressure 

for “staying together” 

multicellularity among clonal 

(mother-daughter) cells. 


