

What's so special about a graphical, parallel approach to computational biology?

GRAPHICS: hardware designed for rendering computer graphics – video games, movie special effects.

PROCESSING: data handling strategies designed for parallel computation.

U	
---	--

UNIT: block that resembles a microprocessor, often arrayed in parallel.

Comparing parallel GPUs to parallel CPUs

Comparing parallel GPU to parallel CPU computing

COURTESY: CUDA SDK, nVIDIA forums (forums.nvidia.com)

Traditional approach: execute a program or algorithm on a single processor (serially).

Parallel approach: execute a program or algorithm across multiple processors simultaneously.

Traditional approach: execute a program or algorithm on a single processor (serially).

Parallel approach: execute a program or algorithm across multiple processors simultaneously.

Parallel ≠ Serial:

1) P-completeness: $P \neq NC$

 \mathbf{P} = class of problems solvable in polynomial sequential time.

NC = class of problems solvable in polyalgorithmic parallel time using n parallel processors.

Additional cores ≠ linear scaling of performance:

2) **P** $[2^{O(\log n)}] \neq$ **NC** $[2^{O(\log n)} \text{ using } O(n) \text{ processors}]$

Graphical, parallel biology in silico (on computing hardware)

Distributed Processing Symposium, 2009.

GPU kernel (function):

* loads data and defines data structures.

* defines operations on data (stream processing).

* maps to a thread, block structure.

Graphical, parallel biology in silico (on computing hardware)

GPU kernel (function):

* loads data and defines data structures.

* defines operations on data (stream processing).

* maps to a thread, block structure.

Special features of GPU computing:

* fast on-chip memory, off-chip RAM is separate (CUDA architecture).

* distribute problem to multiple threads, iterate, reassemble in global memory. A typical "Hello World" example for parallel, graphical computing

Vector Addition

1) Read element-wise (allocate memory for A,B).

2) Launch kernel, device performs vector addition.

3) C copied from device memory after finished.

How can we statistically decompose a linear vector (a series of values for a single variable) in a parallel, graphical world? (e.g. PCA, Fourier transformations)

Original vector partitioned into tiles

* load balancing considerations (each core should be given similar amount of work to do).

COURTESY: Hwu and Kirk, Programming Massively

How do we implement useful algorithms in a graphical, parallel environment? Mergesort Algorithm for GPU

Order vector A[p,...r] into list $(p \rightarrow q \rightarrow r)$.

Divide: 1) A [p,...q] and 2) A [q+1,....r]

Conquer: sort 1) A [p,...q] and 2) A [q+1,....r]

Merge: 1) A [p,...q] and 2) A [q+1,....r] into A [p,r]

Not easy to implement true recursion in GPU, due to the lack of direct communication between cores.

* iteratively transfer increasingly longer strings to new processors, solve problem. Iterative Version of Mergesort (Kukanas and Devine, CUDA Gems, 2009)

Biology in parallel

What kind of biological problems can we address using a CUDA architecture?

Distributed Behavior:

Flocking, n-body problems (interaction rules, agent-based approaches).

* well-suited problem to a parallel approach, but hard to implement.

Phylogenetics:

Reconstruct the "true tree" of life – evolutionary relationships between species.

* parallel version of common algorithms to reconstruct, sort.

GPU-based Distributed Behavior Models with CUDA

Courtesy: YouTube, ISIS Lab, Universita degli Studi di Salerno

Phylogenetics on CUDA (Parallel) Architectures

Inferrence of Phylogenetic Tree Topologies

Are parallel methods capable of reconstructing evolutionary relationships?

YES

Felsenstein's "Peeling" algorithm, as implemented by Suchard and Rambaut (Bioinformatics, 25(11), 1370-1376 – 2009).

Maximum likelihood is only marginally better on GPU than on parallel CPU.

Graphical biology in the form of texture maps

COURTESY: OpenGL Programming Guide, Chapter 9 (Texture Mapping) A way to tile multidimensional surfaces with 2-D templates (in computer graphics context):

Adding detail to a surface:

- * data mapped to a pattern.
- * pattern is mapped to a surface.
- * pattern consists of repeats, motifs.

Graphical biology in the form of texture maps

COURTESY: OpenGL Programming Guide, Chapter 9 (Texture Mapping)

A way to tile multidimensional surfaces with 2-D templates (in computer graphics context):

Adding detail to a surface:

* data mapped to a pattern.

* pattern is mapped to a surface.

* pattern consists of repeats, motifs.

What kind of problems can this and other data structures potentially address?

* intra- and inter cellular signaling (collective activities of signaling molecules).

* **morphogenesis, gene expression, and proteomics** (where "sequence" and "form" has higher-dimensional information).

* **population-based problems** (populations of cells, organisms produce emergent structures, but behave autonomously).

* multiscalar problems (where processes occur at multiple scales).

Intra- and Intercellular Signaling

Interleukin $1-\beta$ – secretory protein lacking a signal peptide (special route to transport). Mol Bio. Cell, 10(5), 1463-1475 (1999).

Intra- and Intercellular Signaling

10(5), 1463-1475 (1999).

BioSystems, 50, 159-171 (1999).

Example from Cellular Reprogramming (non GPU)

Dynamics Days 2012 Poster (left)

Complex Model:

* hybrid model simulates transforming cell population (lower left).

* interaction rules – series of intercellular functions (upper left).

Example from Cellular Reprogramming (non GPU)

Dynamics Days 2012 Poster (left)

Complex Model:

- * hybrid model simulates transforming cell population (lower left).
- * interaction rules series of intercellular functions (upper left).

Map to a GPU:

* simulate sets of CA neighborhoods with different "genetic" backgrounds. **Hybrid model** (genetic algorithm, cellular automata): **GPU** may allow for cellular contexts to be tested, compared.

Gene Expression and Proteomics

Graphical, parallel computing can be used to analyze microarray data, epistatic interactions, feature detection in proteomics.

GOALS:

* find patterns (motifs)

* make predictions(alignments, predictive models).

* also to find functional relationships (epistasis).

* RNAseq (future): map structure (sequence) to function (expression). Hussong et.al (2009). Highly accelerated feature detection in proteomics data sets using modern graphics processing units. Bioinformatics, 25, 1937-1943.

Shterev et.al (2010). permGPU: Using graphics processing units in RNA microarray association. BMC Bioinformatics, 11, 329

Sinnott-Armstrong et.al (2009). Accelerating epistasis analysis in human genetics with consumer graphics hardware. BMC Bioinformatics, 2.

Gene Expression and Proteomics

Graphical, parallel computing can be used to analyze microarray data, epistatic interactions, feature detection in proteomics.

GOALS:

* find patterns (motifs)

* make predictions(alignments, predictive models).

* also to find functional relationships (epistasis).

* RNAseq (future): map structure (sequence) to function (expression). MapbiologicalprocesstoacomputationalmodeltoaGPUimplementation.

Hussong et.al (2009). Highly accelerated feature detection in proteomics data sets using modern graphics processing units. Bioinformatics, 25, 1937-1943.

Shterev et.al (2010). permGPU: Using graphics processing units in RNA microarray association. BMC Bioinformatics, 11, 329

Sinnott-Armstrong et.al (2009). Accelerating epistasis analysis in human genetics with consumer graphics hardware. BMC Bioinformatics, 2.

Parallel, Graphical Morphogenesis

Autonomous Cells (signaling pathways, genomes) >> assembly into communities, populations (emergent process).

Graphical approach allows us to compute many possible scenarios of growth, intercalation, and translation/rotation.

* development is explicitly 3D, physics engine capabilities of GPU well-suited to the task.

* modeling variability in development may also be possible (multicore architecture can allow you to introduce different conditions on different threads/cores).

EXAMPLE:

Tapia, J.J. and D'Souza, R.M. (2011). Parallelizing the Cellular Potts Model on Graphics Processing Units. Computer Physics Communications, 182(4), 857-865.

* used CompuCell 3D to model morphogenesis using Cellular Potts model.

Population Modeling in Parallel

Populations:

* ubiquitous in biology, particularly for adaptive processes.

* agents distributed across nodes, checked against solutions (in global memory).

Genetic Algorithms (GA):

* uses a population of agents to find the local, global optima for a given problem.

* can be applied to optimization-friendly problems.

Population Modeling in Parallel

Populations:

* ubiquitous in biology, particularly for adaptive processes.

* agents distributed across nodes, checked against solutions (in global memory).

Genetic Algorithms (GA):

* uses a population of agents to find the local, global optima for a given problem.

* can be applied to optimization-friendly problems.

COURTESY: Chapter 6, Parallel Combinatorial Optimization

Populations can be averaging, filtering devices for stochasticity at single cell, organism level.

Multiscalar Processes

In some cases, multigrid methods are used for multiscalar problems.

BUT CONSIDER:

Processes that occur at different scales, unified by a scaling factor?

Multiscalar Processes

COURTESY: OpenGL Programming Guide, Chapter 9 (Texture Mapping)

Fractal growth

In some cases, multigrid methods are used for multiscalar problems.

BUT CONSIDER:

Processes that occur at different scales, unified by a scaling factor?

Variation at the same scale (allometric growth):

* growth can be scaled by a exponential factor (2/3rds scaling, etc).

* same pattern of genes expression, just goes on longer (growth):

Self-similarity at different scales (fractal growth):

* features are similar at different scales, just larger or smaller.

In a parallel universe?

Graphics or no graphics, is that the question (benefit)?

What are the benefits of graphical, parallel processing (besides speed-up)?

* can handle matrix-intensive calculations (co-registration, virtual physics, volume rendering) well.

PhysX MAYA demo. COURTESY: YouTube.

Graphics or no graphics, is that the question (benefit)?

What are the benefits of graphical, parallel processing (besides speed-up)?

* can handle matrix-intensive calculations (coregistration, virtual physics, volume rendering) well.

* can handle multi-dimensional datasets (complex geometries) well.

* parallelization = new set of rules (requires new algorithms well suited to distributed processes).

PhysX MAYA demo. COURTESY: YouTube.

Co-registered datasets: neuroimaging data (above), magnetic field mapping (below).

Hard-to-define-Events Workshop Announcement (July, 2012)

What are Hard-to-define Events? Below are four examples:

Highly-recursive processes, embedded patterns, and inherent high-dimensionality, within which events of interest may be embedded.	Held in conjunction with the <u>Artificial Life 13</u> conference, hosted by the
Processes that result in rare events that are of large magnitude or extreme in nature, which are related to events of interest.	BEACONCenteratMichiganStateUniversity.
Processes that result in significant fluctuations, within which events of interest are embedded.	WANTED! Virtual
Social, cognitive, or neuronal processes that are not explicitly causal (diffuse and/or strongly interacting).	the world) on the weekend of July 20-22, 2012.

Contact Bradly Alicea (biodroid) at bradly.alicea <at> ieee.org for more information, or visit <u>http://www.msu.edu/~aliceabr/hard-to-define-events.htm</u> for the most current developments and scheduling updates.