
Scenes from a Graphical, Parallel Biological

World

Bradly Alicea

Embryo Physics Course, April 2012

http://www.msu.edu/~aliceabr/

Programming using

CUDA (compute unified

device architecture)

Parallel graphics hardware

made by nVIDIA

(http://www.nvidia.com)

I am interested in finding novel

representational paradigms for biological

problems, not just “speeding things up”.

What’s so special about a

graphical, parallel approach

to computational biology?

G

P

U

GRAPHICS: hardware

designed for rendering computer

graphics – video games, movie

special effects.

PROCESSING: data handling

strategies designed for parallel

computation.

UNIT: block that resembles a

microprocessor, often arrayed in

parallel.

Comparing parallel GPUs to parallel CPUs

Brown and Snoeyink, GPU

Nearest-Neighbor Searches

using a Minimal kd-tree

Speedup for certain tasks (brute-

force kNN search) – due to more

on-chip memory.

Fast k Nearest Neighbor Search

using GPU, arXiv:0804.1448.

Comparing parallel GPU to parallel CPU computing

GPU Parallel Processor Design

* multithreaded processor (multiple

blocks per core, multiple cores).

CPU Parallel Processor Design

* no global (shared) memory, multiple

cores.

Brown and Snoeyink, GPU

Nearest-Neighbor Searches

using a Minimal kd-tree

Speedup for certain tasks (brute-

force kNN search) – due to more

on-chip memory.

Fast k Nearest Neighbor Search

using GPU, arXiv:0804.1448.

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *ptr = bitmap.get_ptr();

 kernel(ptr);

 bitmap.display_and_exit();

}

void kernel(unsigned char *ptr){

 for (int y=0; y<DIM; y++) {

 for (int x=0; x<DIM; x++) {

 int offset = x + y * DIM;

 int juliaValue = julia(x, y);

 ptr[offset*4 + 0] = 255 * juliaValue;

 ptr[offset*4 + 1] = 0;

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

 }

 }

 }

int julia(int x, int y) {

 const float scale = 1.5;

 float jx = scale * (float)(DIM/2 - x)/(DIM/2);

 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);

 cuComplex a(jx, jy);

 int i = 0;

 for (i=0; i<200; i++) {

 a = a * a + c;

 if (a.magnitude2() > 1000)

 return 0;

 }

 return 1

}

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 dim3 grid(DIM,DIM);

 kernel<<<grid,1>>>(dev_bitmap);

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(),

 dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 bitmap.display_and_exit();

 cudaFree(dev_bitmap);

}

HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(),

 dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

__global__ void kernel(unsigned char *ptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = blockIdx.x;

 int y = blockIdx.y;

 int offset = x + y * gridDim.x;

 // now calculate the value at that position

 int juliaValue = julia(x, y);

 ptr[offset*4 + 0] = 255 * juliaValue;

 ptr[offset*4 + 1] = 0;

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

}

Julia Set – CUDA for

CPU

Julia Set – CUDA for

GPU

Map complex input

data to a grid,

block structure

COURTESY: CUDA SDK, nVIDIA forums (forums.nvidia.com)

Traditional approach: execute a program or algorithm on a single processor

(serially).

Parallel approach: execute a program or algorithm across multiple processors

simultaneously.

GPU uses stream processing

* execute a function on a set of

input data, produce a set of outputs

(operations done in parallel).

* no dependencies between

elements.

COURTESY:

GPU Gems #37

Traditional approach: execute a program or algorithm on a single processor

(serially).

Parallel approach: execute a program or algorithm across multiple processors

simultaneously.

Parallel ≠ Serial:

1) P-completeness: P ≠ NC

P = class of problems solvable in polynomial

sequential time.

NC = class of problems solvable in

polyalgorithmic parallel time using n parallel

processors.

Additional cores ≠ linear scaling of

performance:

2) P [2O(log n)] ≠ NC [2O(log n) using O(n)

processors]

GPU uses stream processing

* execute a function on a set of

input data, produce a set of outputs

(operations done in parallel).

* no dependencies between

elements.

COURTESY:

GPU Gems #37

Single core =

1x

Four cores =

3.16x

oooooo Satish, Harris, and Garland; IEEE International Parallel and

Distributed Processing Symposium, 2009.

GPU kernel (function):

* loads data and defines data

structures.

* defines operations on data (stream

processing).

* maps to a thread, block structure.

Graphical, parallel biology in silico (on computing hardware)

oooooo Satish, Harris, and Garland; IEEE International Parallel and

Distributed Processing Symposium, 2009.

Special features of GPU computing:

* fast on-chip memory, off-chip RAM

is separate (CUDA architecture).

* distribute problem to multiple

threads, iterate, reassemble in global

memory.

GPU kernel (function):

* loads data and defines data

structures.

* defines operations on data (stream

processing).

* maps to a thread, block structure.

Graphical, parallel biology in silico (on computing hardware)

A typical “Hello World” example

for parallel, graphical computing

1) Read element-wise (allocate memory for A,B).

2) Launch kernel, device performs vector addition.

3) C copied from device memory after finished.

A(0) A(1) A(2) A(3) A(4)

B(0) B(1) B(2) B(3) B(4)

C(0) C(1) C(2) C(3) C(4)

+

+

+

+

+

Vector Addition {

=

Representing Block and

Thread Indices on a

single GPU Core

Address system:

* thread elements can
cooperate, block elements
cannot.

Multigrid techniques:

* grid resized as needed
during convergence of
optimization algorithm.

* appropriate for
multiscalar computations
(physics-based problems).

0

1

2

0

1

2

0,0 0,1

1,0 1,1

Block Index

Thread Index

Original vector partitioned into tiles

A(0) A(4) A(8) A(12)

A (0,0)

A(1,0)

A(2,0)

A(3,0)

How can we statistically decompose a linear vector (a series of

values for a single variable) in a parallel, graphical world? (e.g.

PCA, Fourier transformations)

Each “tile” represents a component

or segment of decomposed data:

* data can also be partitioned prior to

analysis (for parallelization).

* minimize transfer between global

memory and cores (find natural

“components” of data).

* load balancing considerations (each

core should be given similar amount

of work to do).

COURTESY: Hwu and Kirk, Programming Massively

Parallel Processors: a hands on approach.

How do we implement useful

algorithms in a graphical, parallel

environment? Mergesort Algorithm

for GPU

Iterative Version of Mergesort

(Kukanas and Devine, CUDA Gems,

2009)

2 5 4 6 1 3
Order vector A[p,…r] into list (p  q  r).

Divide: 1) A [p,…q] and 2) A [q+1,….r]

Conquer: sort 1) A [p,…q] and 2) A [q+1,….r]

Merge: 1) A [p,…q] and 2) A [q+1,….r] into

A [p,r]

2, 5 4, 6

1, 2, 3, 4, 5, 6

2, 4, 5, 6

1, 3

Not easy to implement true recursion in GPU,

due to the lack of direct communication between

cores.

* iteratively transfer increasingly longer strings

to new processors, solve problem.

Biology in parallel

What kind of biological

problems can we address

using a CUDA

architecture?

Distributed Behavior:

Flocking, n-body problems (interaction

rules , agent-based approaches).

* well-suited problem to a parallel

approach, but hard to implement.

Phylogenetics:

Reconstruct the “true tree” of life –

evolutionary relationships between

species.

* parallel version of common

algorithms to reconstruct, sort.

Inferrence of

Phylogenetic Tree

Topologies

Are parallel methods

capable of reconstructing

evolutionary relationships?

YES

Felsenstein’s “Peeling”

algorithm, as implemented

by Suchard and Rambaut

(Bioinformatics, 25(11),

1370-1376 – 2009).

Maximum likelihood is

only marginally better on

GPU than on parallel CPU.

Graphical biology in the form

of texture maps

COURTESY: OpenGL Programming Guide,

Chapter 9 (Texture Mapping)

A way to tile multidimensional

surfaces with 2-D templates (in

computer graphics context):

Adding detail to a surface:

* data mapped to a pattern.

* pattern is mapped to a surface.

* pattern consists of repeats, motifs.

Graphical biology in the form

of texture maps

COURTESY: OpenGL Programming Guide,

Chapter 9 (Texture Mapping)

A way to tile multidimensional

surfaces with 2-D templates (in

computer graphics context):

Adding detail to a surface:

* data mapped to a pattern.

* pattern is mapped to a surface.

* pattern consists of repeats, motifs.

What kind of problems can this and other data structures potentially address?

* intra- and inter cellular signaling (collective activities of signaling molecules).

* morphogenesis, gene expression, and proteomics (where “sequence” and “form”

has higher-dimensional information).

* population-based problems (populations of cells, organisms produce emergent

structures, but behave autonomously).

* multiscalar problems (where processes occur at multiple scales).

In leaderless mRNAs, 3’ end is cleaved,

modifies sites of action (Cell, 147(1),

147-157 – 2011).

Interleukin 1-β – secretory protein lacking a signal

peptide (special route to transport). Mol Bio. Cell,

10(5), 1463-1475 (1999).

Figure 6
Figure 1

Intra- and Intercellular Signaling

Intra- and Intercellular Signaling

Occupy x,y,z,t? Shoaling fish?

What does it mean to be leaderless? In leaderless mRNAs, 3’ end is cleaved,

modifies sites of action (Cell, 147(1),

147-157 – 2011).

Interleukin 1-β – secretory protein lacking a signal

peptide (special route to transport). Mol Bio. Cell,

10(5), 1463-1475 (1999).

Figure 6
Figure 1

Leaderless: not embedded in a hierarchy.

Leaderless molecules do not follow the leader (but

not necessarily random behavior).

* under certain conditions, leaderless activity

(shoaling fish?) may lead to order, patterned

behavior.

See also: Intracellular signaling proteins as

"smart" agents in parallel distributed processes.

BioSystems, 50, 159-171 (1999).

Example from Cellular Reprogramming (non GPU)

Dynamics Days 2012

Poster (left)

Complex Model:

* hybrid model

simulates transforming

cell population (lower

left).

* interaction rules –

series of intercellular

functions (upper left).

Example from Cellular Reprogramming (non GPU)

Assemble, compare solutions
(global memory, fitness function)

Local

Memory

Local

Memory

Local

Memory

Various cellular

contexts

Dynamics Days 2012

Poster (left)

Complex Model:

* hybrid model

simulates transforming

cell population (lower

left).

* interaction rules –

series of intercellular

functions (upper left).

Map to a GPU:

* simulate sets of CA

neighborhoods with

different “genetic”

backgrounds.

Hybrid model (genetic algorithm, cellular

automata): GPU may allow for cellular

contexts to be tested, compared.

Hussong et.al (2009). Highly accelerated feature detection in

proteomics data sets using modern graphics processing units.

Bioinformatics, 25, 1937-1943.

Shterev et.al (2010). permGPU: Using graphics processing units

in RNA microarray association. BMC Bioinformatics, 11, 329

Sinnott-Armstrong et.al (2009). Accelerating epistasis analysis

in human genetics with consumer graphics hardware. BMC

Bioinformatics, 2.

Gene Expression and Proteomics

Graphical, parallel computing can be used

to analyze microarray data, epistatic

interactions, feature detection in

proteomics.

GOALS:

* find patterns (motifs)

* make predictions

(alignments, predictive

models).

* also to find functional

relationships (epistasis).

* RNAseq (future): map

structure (sequence) to

function (expression).

Hussong et.al (2009). Highly accelerated feature detection in

proteomics data sets using modern graphics processing units.

Bioinformatics, 25, 1937-1943.

Shterev et.al (2010). permGPU: Using graphics processing units

in RNA microarray association. BMC Bioinformatics, 11, 329

Sinnott-Armstrong et.al (2009). Accelerating epistasis analysis

in human genetics with consumer graphics hardware. BMC

Bioinformatics, 2.

Gene Expression and Proteomics

Graphical, parallel computing can be used

to analyze microarray data, epistatic

interactions, feature detection in

proteomics.
Map biological

process to a

computational model

to a GPU

implementation.

Decompose, step through matrices of RNA folding data

ALGORITHM:

GOALS:

* find patterns (motifs)

* make predictions

(alignments, predictive

models).

* also to find functional

relationships (epistasis).

* RNAseq (future): map

structure (sequence) to

function (expression).

Parallel, Graphical Morphogenesis

EXAMPLE:

Tapia, J.J. and D’Souza, R.M. (2011). Parallelizing the

Cellular Potts Model on Graphics Processing Units.

Computer Physics Communications, 182(4), 857-865.

* used CompuCell 3D to model morphogenesis using

Cellular Potts model.

Autonomous Cells (signaling pathways, genomes) >> assembly into communities,

populations (emergent process).

Graphical approach allows us to compute many possible scenarios of growth,

intercalation, and translation/rotation.

* development is explicitly 3D, physics engine capabilities of GPU well-suited to

the task.

* modeling variability in development may also be possible (multicore architecture

can allow you to introduce different conditions on different threads/cores).

Population Modeling in Parallel

Populations:

* ubiquitous in biology, particularly for

adaptive processes.

* agents distributed across nodes, checked

against solutions (in global memory).

Genetic Algorithms

(GA):

* uses a population of

agents to find the local,

global optima for a

given problem.

* can be applied to optimization-friendly

problems.

Population Modeling in Parallel

Solutions
(global memory)

Local

Memory

Local

Memory

Local

Memory

Evaluation

Agents

COURTESY: Chapter 6, Parallel Combinatorial Optimization

Populations can be averaging, filtering

devices for stochasticity at single cell,

organism level.

Populations:

* ubiquitous in biology, particularly for

adaptive processes.

* agents distributed across nodes, checked

against solutions (in global memory).

Genetic Algorithms

(GA):

* uses a population of

agents to find the local,

global optima for a

given problem.

* can be applied to optimization-friendly

problems.

COURTESY: OpenGL Programming

Guide, Chapter 9 (Texture Mapping)

Using Mipmaps
(scaled texture maps)

Multiscalar Processes

Same pattern,

scaled down

In some cases, multigrid methods are

used for multiscalar problems.

BUT CONSIDER:

Processes that occur at different scales,

unified by a scaling factor?

COURTESY: OpenGL Programming

Guide, Chapter 9 (Texture Mapping)

Using Mipmaps
(scaled texture maps)

Multiscalar Processes

Same pattern,

scaled down

In some cases, multigrid methods are

used for multiscalar problems.

BUT CONSIDER:

Processes that occur at different scales,

unified by a scaling factor?

Variation at the same scale (allometric

growth):

* growth can be scaled by a

exponential factor (2/3rds scaling, etc).

* same pattern of genes expression,

just goes on longer (growth):

Self-similarity at different scales

(fractal growth):

* features are similar at different

scales, just larger or smaller.

Scaled growth,

Babboon skulls

Basics of Allomtery,

Pharyngula Blog

Fractal growth

http://scienceblogs.com/pharyngula/2007/06/basics_allometry.php
http://scienceblogs.com/pharyngula/2007/06/basics_allometry.php
http://scienceblogs.com/pharyngula/2007/06/basics_allometry.php
http://scienceblogs.com/pharyngula/2007/06/basics_allometry.php

In a parallel universe?

Graphics or no graphics, is that the question (benefit)?

PhysX MAYA demo. COURTESY: YouTube.

What are the benefits of graphical, parallel

processing (besides speed-up)?

* can handle matrix-intensive calculations (co-

registration, virtual physics, volume rendering) well.

Graphics or no graphics, is that the question (benefit)?

PhysX MAYA demo. COURTESY: YouTube.

Co-registered datasets: neuroimaging data

(above), magnetic field mapping (below).

What are the benefits of graphical, parallel

processing (besides speed-up)?

* can handle matrix-intensive calculations (co-

registration, virtual physics, volume rendering) well.

* can handle multi-dimensional datasets (complex

geometries) well.

* parallelization = new set of rules (requires new

algorithms well suited to distributed processes).

Hard-to-define-Events Workshop

Announcement (July, 2012)

Contact Bradly Alicea (biodroid) at bradly.alicea <at> ieee.org for more information,

or visit http://www.msu.edu/~aliceabr/hard-to-define-events.htm for the most

current developments and scheduling updates.

Held in conjunction with

the Artificial Life 13

conference, hosted by the

BEACON Center at

Michigan State

University.

Are you interested in how complexity obscures the important features of a complex system? Do you work

with a system highly affected by or embedded in noise? Do you work with a system that is fundamentally

interactive? Has it impeded your science? Such hard-to-define events are not a major focus of current

scientific approaches. With this workshop, we will begin to challenge conventional wisdom of statistical

analysis and modeling by considering a variety of models (robots, organisms, cells) and techniques

(parallel computing, nonlinear dynamics). We are seeking participants from multiple perspectives, and

examples that transcend traditional disciplines are of particular interest.

WANTED! Virtual

participants (anywhere in

the world) on the weekend

of July 20-22, 2012.

What are Hard-to-define Events? Below are four examples:

http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.alife13.org/
http://www.alife13.org/
http://www.alife13.org/
http://www.alife13.org/
http://www.alife13.org/
http://www.alife13.org/
http://www.beacon-center.org/
http://www.beacon-center.org/
http://www.beacon-center.org/

