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Programming using  

CUDA (compute unified  

device architecture) 

Parallel graphics hardware 

made by nVIDIA 

(http://www.nvidia.com) 

I am interested in finding novel 

representational paradigms for biological 

problems, not just “speeding things up”. 



What’s so special about a 

graphical, parallel approach 

to computational biology? 



G 

P 

U 

GRAPHICS: hardware 

designed for rendering computer 

graphics – video games, movie 

special effects. 

PROCESSING: data handling 

strategies designed for parallel  

computation. 

UNIT: block that resembles a 

microprocessor, often arrayed in 

parallel. 



Comparing parallel GPUs to parallel CPUs 

Brown and Snoeyink, GPU  

Nearest-Neighbor Searches  

using a Minimal kd-tree 

Speedup for certain tasks (brute- 

force kNN search) – due to more 

on-chip memory. 

Fast k Nearest Neighbor Search  

using GPU, arXiv:0804.1448. 



Comparing parallel GPU to parallel CPU computing 

GPU Parallel Processor Design 

* multithreaded processor (multiple 

blocks per core, multiple cores). 

CPU Parallel Processor Design 

* no global (shared) memory, multiple  

cores. 

Brown and Snoeyink, GPU  

Nearest-Neighbor Searches  

using a Minimal kd-tree 

Speedup for certain tasks (brute- 

force kNN search) – due to more 

on-chip memory. 

Fast k Nearest Neighbor Search  

using GPU, arXiv:0804.1448. 



int main( void ) { 

    CPUBitmap bitmap( DIM, DIM ); 

    unsigned char *ptr = bitmap.get_ptr(); 

    kernel( ptr ); 

    bitmap.display_and_exit(); 

} 

void kernel( unsigned char *ptr ){ 

    for (int y=0; y<DIM; y++) { 

        for (int x=0; x<DIM; x++) { 

            int offset = x + y * DIM; 

            int juliaValue = julia( x, y ); 

            ptr[offset*4 + 0] = 255 * juliaValue; 

            ptr[offset*4 + 1] = 0; 

            ptr[offset*4 + 2] = 0; 

            ptr[offset*4 + 3] = 255; 

        } 

    } 

 } 

int julia( int x, int y ) { 

    const float scale = 1.5; 

    float jx = scale * (float)(DIM/2 - x)/(DIM/2); 

    float jy = scale * (float)(DIM/2 - y)/(DIM/2); 

    cuComplex c(-0.8, 0.156); 

    cuComplex a(jx, jy); 

    int i = 0; 

    for (i=0; i<200; i++) { 

        a = a * a + c; 

        if (a.magnitude2() > 1000) 

            return 0; 

    } 

    return 1 

} 

int main( void ) { 

    CPUBitmap bitmap( DIM, DIM ); 

    unsigned char    *dev_bitmap; 

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap,  

                              bitmap.image_size() ) ); 

    dim3    grid(DIM,DIM); 

    kernel<<<grid,1>>>( dev_bitmap ); 

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(),  

                              dev_bitmap,  

                              bitmap.image_size(),  

                              cudaMemcpyDeviceToHost ) ); 

    bitmap.display_and_exit(); 

    cudaFree( dev_bitmap ); 

} 

 

HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(),  

                              dev_bitmap,  

                              bitmap.image_size(),  

                              cudaMemcpyDeviceToHost ) ); 

 

__global__ void kernel( unsigned char *ptr ) { 

    // map from threadIdx/BlockIdx to pixel position 

    int x = blockIdx.x; 

    int y = blockIdx.y; 

    int offset = x + y * gridDim.x; 

    // now calculate the value at that position 

    int juliaValue = julia( x, y ); 

    ptr[offset*4 + 0] = 255 * juliaValue; 

    ptr[offset*4 + 1] = 0; 

    ptr[offset*4 + 2] = 0; 

    ptr[offset*4 + 3] = 255; 

} 

Julia Set – CUDA for 

CPU 

Julia Set – CUDA for 

GPU 

Map complex input 

data to a grid, 

block structure  

COURTESY: CUDA SDK, nVIDIA forums (forums.nvidia.com) 



Traditional approach: execute a program or algorithm on a single processor 

(serially). 

Parallel approach: execute a program or algorithm across multiple processors 

simultaneously. 

GPU uses stream processing 

 

 

 

 
* execute a function on a set of 

input data, produce a set of outputs 

(operations done in parallel). 

 

* no dependencies between 

elements. 

COURTESY:  

GPU Gems #37 



Traditional approach: execute a program or algorithm on a single processor 

(serially). 

Parallel approach: execute a program or algorithm across multiple processors 

simultaneously. 

Parallel ≠ Serial: 
 

1) P-completeness: P ≠ NC 

 

P = class of problems solvable in polynomial 

sequential time. 

 

NC = class of problems solvable in 

polyalgorithmic parallel time using n parallel 

processors. 

 

Additional cores ≠ linear scaling of 

performance: 
 

2) P [2O(log n)] ≠ NC [2O(log n) using O(n) 

processors] 

GPU uses stream processing 

 

 

 

 
* execute a function on a set of 

input data, produce a set of outputs 

(operations done in parallel). 

 

* no dependencies between 

elements. 

COURTESY:  

GPU Gems #37 

Single core =  

1x 

Four cores =  

3.16x 



oooooo Satish, Harris, and Garland; IEEE International Parallel and 

Distributed Processing Symposium, 2009. 

GPU kernel (function): 

* loads data and defines data 

structures. 

 

* defines operations on data (stream 

processing). 

 

* maps to a thread, block structure. 

Graphical, parallel biology in silico (on computing hardware) 



oooooo Satish, Harris, and Garland; IEEE International Parallel and 

Distributed Processing Symposium, 2009. 

Special features of GPU computing: 

 

* fast on-chip memory, off-chip RAM 

is separate (CUDA architecture). 

 

* distribute problem to multiple 

threads, iterate, reassemble in global 

memory. 

GPU kernel (function): 

* loads data and defines data 

structures. 

 

* defines operations on data (stream 

processing). 

 

* maps to a thread, block structure. 

Graphical, parallel biology in silico (on computing hardware) 



A typical “Hello World” example 

for parallel, graphical computing  

1) Read element-wise (allocate memory for A,B). 

2) Launch kernel, device performs vector addition. 

3) C copied from device memory after finished. 

A(0) A(1) A(2) A(3) A(4) 

B(0) B(1) B(2) B(3) B(4) 

C(0) C(1) C(2) C(3) C(4) 

 

+ 
 

+ 
 

+ 
 

+ 
 

+ 

Vector Addition { 

= 



Representing Block and 

Thread Indices on a 

single GPU Core  

Address system: 
 
* thread elements can 
cooperate, block elements 
cannot. 
 
 

Multigrid techniques: 
 
* grid resized as needed 
during convergence of 
optimization algorithm. 
 

* appropriate for 
multiscalar computations 
(physics-based problems). 

 

0 
 

1 
 

2 

 

0 

 

1 

 

2 
 
 

0,0 0,1 

1,0 1,1 

Block Index 

Thread Index 



Original vector partitioned into tiles 

A(0) A(4) A(8) A(12) 

 

A (0,0) 

 

A(1,0) 

 

A(2,0) 

 

A(3,0) 

How can we statistically decompose a linear vector (a series of 

values for a single variable) in a parallel, graphical world? (e.g. 

PCA, Fourier transformations) 

Each “tile” represents a component 

or segment of decomposed data: 

 

* data can also be partitioned prior to 

analysis (for parallelization). 

 

* minimize transfer between global 

memory and cores (find natural 

“components” of data). 

 

* load balancing considerations (each 

core should be given similar amount 

of work to do). 

COURTESY: Hwu and Kirk, Programming Massively 

Parallel Processors: a hands on approach. 



How do we implement useful 

algorithms in a graphical, parallel 

environment? Mergesort Algorithm 

for GPU 

Iterative Version of Mergesort 

(Kukanas and Devine, CUDA Gems, 

2009) 

2 5 4 6 1 3 
Order vector A[p,…r] into list (p  q  r). 

 

Divide: 1) A [p,…q] and 2) A [q+1,….r] 

 

 

Conquer:  sort 1) A [p,…q] and 2) A [q+1,….r] 

 

 

Merge: 1) A [p,…q] and 2) A [q+1,….r] into  

A [p,r] 

2, 5 4, 6 

1, 2, 3, 4, 5, 6 

2, 4, 5, 6 

1, 3 

Not easy to implement true recursion in GPU, 

due to the lack of direct communication between 

cores. 
 

* iteratively transfer increasingly longer strings 

to new processors, solve problem. 



Biology in parallel 



What kind of biological 

problems can we address 

using a CUDA 

architecture? 

Distributed Behavior: 

Flocking, n-body problems (interaction 

rules , agent-based approaches). 

 

* well-suited problem to a parallel 

approach, but hard to implement. 

 

Phylogenetics: 

Reconstruct the “true tree” of life – 

evolutionary relationships between 

species. 

 

* parallel version of common 

algorithms to reconstruct, sort. 



Inferrence of 

Phylogenetic Tree 

Topologies 

Are parallel methods 

capable of reconstructing 

evolutionary relationships?  

 

YES 

 

Felsenstein’s “Peeling” 

algorithm, as implemented 

by Suchard and Rambaut 

(Bioinformatics, 25(11), 

1370-1376 – 2009). 

 

Maximum likelihood is 

only marginally better on 

GPU than on parallel CPU. 



Graphical biology in the form 

of texture maps 

COURTESY: OpenGL Programming Guide, 

Chapter 9 (Texture Mapping) 

A way to tile multidimensional 

surfaces with 2-D templates (in 

computer graphics context): 

 

Adding detail to a surface: 

 

* data mapped  to a pattern. 

 

* pattern is mapped to a surface. 

 

* pattern consists of repeats, motifs. 



Graphical biology in the form 

of texture maps 

COURTESY: OpenGL Programming Guide, 

Chapter 9 (Texture Mapping) 

A way to tile multidimensional 

surfaces with 2-D templates (in 

computer graphics context): 

 

Adding detail to a surface: 

 

* data mapped  to a pattern. 

 

* pattern is mapped to a surface. 

 

* pattern consists of repeats, motifs. 

What kind of problems can this and other data structures potentially address? 
 

* intra- and inter cellular signaling (collective activities of signaling molecules). 
 

* morphogenesis, gene expression, and proteomics (where “sequence” and “form” 

has higher-dimensional information). 
 

* population-based problems (populations of cells, organisms produce emergent 

structures, but behave autonomously). 
 

* multiscalar problems (where processes occur at multiple scales). 



In leaderless mRNAs, 3’ end is cleaved, 

modifies sites of action (Cell, 147(1), 

147-157 – 2011).  

Interleukin 1-β – secretory protein lacking a signal 

peptide (special route to transport). Mol Bio. Cell, 

10(5), 1463-1475 (1999). 

Figure 6 
Figure 1 

Intra- and Intercellular Signaling 



Intra- and Intercellular Signaling 

Occupy x,y,z,t? Shoaling fish? 

What does it mean to be leaderless? In leaderless mRNAs, 3’ end is cleaved, 

modifies sites of action (Cell, 147(1), 

147-157 – 2011).  

Interleukin 1-β – secretory protein lacking a signal 

peptide (special route to transport). Mol Bio. Cell, 

10(5), 1463-1475 (1999). 

Figure 6 
Figure 1 

Leaderless: not embedded in a hierarchy. 

 

 

Leaderless molecules do not follow the leader (but 

not necessarily random behavior). 
 

* under certain conditions, leaderless activity 

(shoaling fish?) may lead to order, patterned 

behavior.  
 

See also: Intracellular signaling proteins as 

"smart" agents in parallel distributed processes. 

BioSystems, 50, 159-171 (1999). 



Example from Cellular Reprogramming (non GPU) 

Dynamics Days 2012 

Poster (left) 

 

Complex Model: 

 

* hybrid model 

simulates transforming 

cell population (lower 

left). 

 

* interaction rules – 

series of intercellular 

functions (upper left). 



Example from Cellular Reprogramming (non GPU) 

Assemble, compare solutions 
(global memory, fitness function) 

Local 

Memory 

Local 

Memory 

Local 

Memory 

Various cellular 

contexts 

Dynamics Days 2012 

Poster (left) 

 

Complex Model: 

 

* hybrid model 

simulates transforming 

cell population (lower 

left). 

 

* interaction rules – 

series of intercellular 

functions (upper left). 

 

Map to a GPU:  

 

* simulate sets of CA 

neighborhoods with 

different “genetic” 

backgrounds. 

Hybrid model (genetic algorithm, cellular 

automata): GPU may allow for cellular 

contexts to be tested, compared. 



Hussong et.al (2009). Highly accelerated feature detection in 

proteomics data sets using modern graphics processing units.  

Bioinformatics, 25, 1937-1943. 

 

Shterev et.al (2010). permGPU: Using graphics processing units 

in RNA microarray association. BMC Bioinformatics, 11, 329 

 

Sinnott-Armstrong et.al (2009). Accelerating epistasis analysis 

in human genetics with consumer graphics hardware. BMC 

Bioinformatics, 2. 

Gene Expression and Proteomics 

Graphical, parallel computing can be used 

to analyze microarray data, epistatic 

interactions, feature detection in 

proteomics. 

GOALS:  

 

* find patterns (motifs)  

 

* make predictions 

(alignments, predictive 

models). 

 

* also to find functional 

relationships (epistasis). 

 

* RNAseq (future): map 

structure (sequence) to 

function (expression). 



Hussong et.al (2009). Highly accelerated feature detection in 

proteomics data sets using modern graphics processing units.  

Bioinformatics, 25, 1937-1943. 

 

Shterev et.al (2010). permGPU: Using graphics processing units 

in RNA microarray association. BMC Bioinformatics, 11, 329 

 

Sinnott-Armstrong et.al (2009). Accelerating epistasis analysis 

in human genetics with consumer graphics hardware. BMC 

Bioinformatics, 2. 

Gene Expression and Proteomics 

Graphical, parallel computing can be used 

to analyze microarray data, epistatic 

interactions, feature detection in 

proteomics. 
Map biological 

process to a 

computational model 

to a GPU 

implementation. 

Decompose, step through matrices of RNA folding data 

ALGORITHM: 

GOALS:  

 

* find patterns (motifs)  

 

* make predictions 

(alignments, predictive 

models). 

 

* also to find functional 

relationships (epistasis). 

 

* RNAseq (future): map 

structure (sequence) to 

function (expression). 



Parallel, Graphical Morphogenesis  

EXAMPLE: 
 

Tapia, J.J. and D’Souza, R.M. (2011). Parallelizing the 

Cellular Potts Model on Graphics Processing Units. 

Computer Physics Communications, 182(4), 857-865. 

 

* used CompuCell 3D to model morphogenesis using 

Cellular Potts model. 

Autonomous Cells  (signaling pathways, genomes) >>  assembly into communities, 

populations (emergent process). 

 

Graphical approach allows us to compute many possible scenarios of growth, 

intercalation, and translation/rotation. 

 

* development is explicitly 3D, physics engine capabilities of GPU well-suited to 

the task. 

 

* modeling variability in development may also be possible (multicore architecture 

can allow you to introduce different conditions on different threads/cores). 



Population Modeling in Parallel 

 

 

 

 

 

 

 

Populations: 

* ubiquitous in biology, particularly for 

adaptive processes. 

 

* agents distributed across nodes, checked 

against solutions (in global memory). 

Genetic Algorithms 

(GA): 

* uses a population of 

agents to find the local, 

global optima for a 

given problem.  

* can be applied to optimization-friendly 

problems.  



Population Modeling in Parallel 

 

 

 

 

 

 

 

Solutions  
(global memory) 

Local 

Memory 

Local 

Memory 

Local 

Memory 

Evaluation  

Agents 

COURTESY: Chapter 6, Parallel Combinatorial Optimization 

Populations can be averaging, filtering 

devices for stochasticity at single cell, 

organism level. 

Populations: 

* ubiquitous in biology, particularly for 

adaptive processes. 

 

* agents distributed across nodes, checked 

against solutions (in global memory). 

Genetic Algorithms 

(GA): 

* uses a population of 

agents to find the local, 

global optima for a 

given problem.  

* can be applied to optimization-friendly 

problems.  



COURTESY: OpenGL Programming 

Guide, Chapter 9 (Texture Mapping) 

Using Mipmaps 
(scaled texture maps) 

Multiscalar Processes 

Same pattern,  

scaled down 

In some cases, multigrid methods are 

used for multiscalar problems. 

 

BUT CONSIDER: 

 

Processes that occur at different scales, 

unified by a scaling factor?  



COURTESY: OpenGL Programming 

Guide, Chapter 9 (Texture Mapping) 

Using Mipmaps 
(scaled texture maps) 

Multiscalar Processes 

Same pattern,  

scaled down 

In some cases, multigrid methods are 

used for multiscalar problems. 

 

BUT CONSIDER: 

 

Processes that occur at different scales, 

unified by a scaling factor?  

 

Variation at the same scale (allometric 

growth): 

 

* growth can be scaled by a 

exponential factor (2/3rds scaling, etc).  

 

* same pattern of genes expression, 

just goes on longer (growth): 

 

Self-similarity at different scales 

(fractal growth): 

 

* features are similar at different 

scales, just larger or smaller. 

Scaled growth, 

Babboon skulls 

Basics of Allomtery, 

Pharyngula Blog 

Fractal growth 

http://scienceblogs.com/pharyngula/2007/06/basics_allometry.php
http://scienceblogs.com/pharyngula/2007/06/basics_allometry.php
http://scienceblogs.com/pharyngula/2007/06/basics_allometry.php
http://scienceblogs.com/pharyngula/2007/06/basics_allometry.php


In a parallel universe? 



Graphics or no graphics, is that the question (benefit)? 

PhysX MAYA demo. COURTESY: YouTube. 

What are the benefits of graphical, parallel 

processing (besides speed-up)? 

 

* can handle matrix-intensive calculations (co-

registration, virtual physics, volume rendering) well.  



Graphics or no graphics, is that the question (benefit)? 

PhysX MAYA demo. COURTESY: YouTube. 

Co-registered datasets: neuroimaging data 

(above), magnetic field mapping (below). 

What are the benefits of graphical, parallel 

processing (besides speed-up)? 

 

* can handle matrix-intensive calculations (co-

registration, virtual physics, volume rendering) well.  

 

* can handle multi-dimensional datasets (complex 

geometries) well. 

 

* parallelization = new set of rules (requires new 

algorithms well suited to distributed processes). 



Hard-to-define-Events Workshop 

Announcement (July, 2012) 

Contact Bradly Alicea (biodroid) at bradly.alicea <at> ieee.org for more information, 

or visit http://www.msu.edu/~aliceabr/hard-to-define-events.htm for the most 

current developments and scheduling updates. 

Held in conjunction with 

the Artificial Life 13 

conference, hosted by the 

BEACON Center at 

Michigan State 

University. 

Are you interested in how complexity obscures the important features of a complex system? Do you work 

with a system highly affected by or embedded in noise? Do you work with a system that is fundamentally 

interactive? Has it impeded your science? Such hard-to-define events are not a major focus of current 

scientific approaches. With this workshop, we will begin to challenge conventional wisdom of statistical 

analysis and modeling by considering a variety of models (robots, organisms, cells) and techniques 

(parallel computing, nonlinear dynamics). We are seeking participants from multiple perspectives, and 

examples that transcend traditional disciplines are of particular interest.  

WANTED! Virtual 

participants (anywhere in 

the world) on the weekend 

of July 20-22, 2012.  

What are Hard-to-define Events? Below are four examples: 

http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.msu.edu/~aliceabr/hard-to-define-events.htm
http://www.alife13.org/
http://www.alife13.org/
http://www.alife13.org/
http://www.alife13.org/
http://www.alife13.org/
http://www.alife13.org/
http://www.beacon-center.org/
http://www.beacon-center.org/
http://www.beacon-center.org/

