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A: Cells that can be transformed from one phenotype to another.

Thomson Lab, University of Wisconsin Caiazzo, M. et.al Nature, 476, 224-227 (2011).
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Q: What is biocomplexity?

Non-reductionist approach,
incorporates multiple mechanisms
and levels of organization.

COURTESY: NSF, Wikipedia

A: complexity of function and structure in living systems.

Organs (cell populations) Orgaisms



Q: How do we “induce” animal cells to
new phenotypes?

Ratroviral vactors containing transganes

A Polycistronic viral vector (e.g. OK-
SIM, BAM) that encode transcription
factors (for key trigger genes).

Doxycyclene treatment: shuts down
factors (result: GFP - colonies).
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# colonies on Day 20
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“Four factor” approach of Yamanaka (2007).

Retroviral vector (delivered via transgene) integrates into
genome of “infected” cells. Occurs in only a fraction of
exposed cells.

Induces differential gene expression, leads to changes in
MRNA concentrations, protein  production, cell
phenotype.

Colonies form among cells with the new “pluripotent”
phenotype, (aggregation of pluripotent cells).

COURTESY: Stem Cell School (http://stemcellschool.com/)



Dynamic transformation: Observing the change in a cellular phenotype over time
(direct) and/or across diversity (indirect).

CONVENTIONAL VIEW: state as a specific, predetermined (a priori) phenotype and biochemical
indicators.

NEW VIEW: transformation is a position on a “surface”, governed by 3 parameters. Decomposed
using experiment, computation.

Adapted from Yamanaka (2009), Hanna et.al (2009).

Cellular transformation “surface”
transformation given a specific gene (g), stimulus (s), and phenotypic outcome (p)?
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Figure 1, Furusawa and Kaneko, Biology Direct, 4: 17 (2009).

Attractor basin approach:

*  pluripotent  phenotypes are in
“metastable states” (can be nudged into
multiple attractor basins given stimulus).

* differentiated phenotypes can be in
attractor basins, or can be metastable
themselves.

* consistent with Waddington’s model of
developmental  canalization  (specific
pathways for differentiation).

* cells choose a specific “path” to and
from different cellular states.



Energy landscape used to characterized transitional and end states during
reprogramming.

* |eft: navigation along minima during process (characterize molecular changes).

* right: stable states = minima and maxima. Characterize cells in relation to
differentiated and stem-like cell type.
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Figure Z | Cellular reprogramming as navigation through a complex attractor
landscape. In a complex cellular attractor landscape there might be many coexisting
stationary attractors (here represented as local minima). each of which might be

associated with a unique molecular signature. In this view. cellular reprogramming -
corresponds to guiding the cell through the landscape from one local minimum to Threhl & rip“‘ "Ni
another (shown by the dotted arrows). As there might be many distinct paths between Fi ast F l_ fix s Hu ent - fx
minima (both direct and through intermediary minima). reprogramming from one cell SChe cxpressaon . fene cApression
type to another might be achieved though numerous different routes#120 . ( Al ) 9 0o ' ( Al )

MacArthur et.al Nature Reviews Molecular
Cell Biology, 10, 673 (2009).



Three components to the stochastic model of reprogramming (presented in
Hanna et.al, 2009):

1) basic assumption: given N cells, one-step reprogramming process occurs with
constant cell-intrinsic rate k. “Popcorn” metaphor.
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2) latency: interval t, defined as time between t, (when first cell in population N is
reprogrammed) and t.., when daughter cells grow to reach detection threshold.
From “first settler” to viable colony.

3) scaling: at any t., population of cells in a well, N(t), scales at rate which first
reprogramming event takes place (determines slope). Cumulative PDF:

Pt +15)=1- e™ where 1 = Ié N(t')dt’

= 1 -e*N{t-lo) for t > tO




Clonal cell

Somatic cell + Oct4, Deterministic or population with ~® Somatic founder el

S02, Kif4, c-Myc == EREREITHRNY == PScels o hie it o Competing models for reprogramming
00 @ Pluripotent call - - e .
‘ . s (stochastic vs. deterministic):
[ % ‘ Constant latency 2; il . Variable latency ;%
E ¢ — g o — o4 1) stochastic: transformation occurs
o¢ - .
g §§ '— % according to a variable latency.
A $ — o - ’ e
= b "
B — L “  * time from trigger to transformation is
: : variable (cell cycle ¢ = m transformations).
19|  Constant latency 4o VIS Variable latency
B 0 — § 0 — 0
£ o X 0 X "
5, 7 éo——gg 2) deterministic: transformation occurs
§ o— g % according to a uniform latency.
Gl X il X
" , 0 * time from trigger to transformation is
[R— [ .
8 o - uniform.
£ag 28
880 . 980
U S . 3@%50 -
g5 252 Elite models argue that only a subset
82§ 525 . .
At : A (1/n) of cells will reprogram (innate
0 —— 1 e 3 LR L ith
0La'(ency (time or cell divisions ’ Latency (time or cell divisions ab I I Ity) )
with Octd, Sox2, KIf4, c-Myc) with Octd, Sox2, Kf4, c-Myc)
Hanna et.al, Nature 462, 595-601 (2009). * elite model is independent of stochasticity

Yamanaka, Nature, 460(7251), 49-52 (2009). vs. uniformity (independent mechanisms?)



a b c
Somatic cell

Acceleration Somatic cell
- nuclear transfer
reprogramming Cell-division-rate Cell-division-rate
factors dependent independent -
L k=l T ® & ——i&
| olo Je
®® Doubling o 61'0_ e Doubling ®® Doubling ]
J  time ~f ...a‘..g time ~0.5¢ J, time ~Ty LA 12
°'+° = :::'.'l“:’ = eespe Blastomere
L 1 1 J
@ A, \/ 1—-2 cell
oo @ e
Stochastic (RS ‘:l’ e ::::r:::: S R divisions
FOCass 2 scosbe0e ceessces eoodoove
F(Cq4, K) > ecespoece -.i/ e0cc0000
8 r 0000000 000000080 iPS cell
< 00080008 00000000 00000000 S
TITITTI T coscosse seasesse Average cell divisions <Cg
:::::::: i.Pté.c.eTl.. ceeeness Cell-intrinsic rate >k
i Average cell divisions ~Cqg
Cell-intrinsic rate ~k
(1 00000000 20000000
ce 00000009 900000080
00000000 00000000
Cilonal WV cecsecse 00000000
with iPS cell Average cell divisions ~Cy4

Cell-intrinsic rate ~k

Example of scaling (more instances of transformation with more cells):

N=10% time to reach > 90% reprogrammed cells in well longer.

N =10% time to reach > 90% reprogrammed cells in well shorter.



Simplest scenario (for stochastic reprogramming):

* one-step rate-limiting transition characterized by a cell-intrinsic rate, which does
not describe reprogramming behavior before and soon after transgene induction.

* perhaps there are multiple modes of reprogramming acceleration.

Arrive at this model by considering:

1) closely monitoring transgene induction, 2) plating efficiency, 3) cell
proliferation, 4) changes in population size across experiment.

There is a yet-to-be-defined rate-limiting, continuous stochastic mechanism
(according to model):

* function of cell division before fully reprogrammed state is attained.

* results support “all with variable latency” model (neither ‘elite” nor
“deterministic™).

* might iPS cells arise preferentially from a precursor (progenitor or adult SC)?



Hypothesis: Cellular reprogramming can be driven by noise.

= Y/m * noise in the form of transcriptional variance and other
stochastic processes can trigger, drive reprogramming process in
vitro.

Figure from PLoS Computational Biology.
2(9). €123 (2006).

Example: MacArthur et.al, PLoS One, 3(8), e3086.

Computational approaches to gene expression include
adding noise (stochastic element) to model.

* non-specific noise in expression of four factors, other genes can trigger
reprogramming.

Black function: Oct4, Sox2. Blue function: NANOG. Red function:
lineage-specific master genes, o: parameter value for amplitude of noise
(same for every gene).

* presence of Oct4, Sox2, and NANOG suppress differentiation
genes and activate stem cell genes (modules).
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Box 4 | A stochastic multi-stable switch

Consider the simple motif in which two transcription factors activate their own
expression and mutually repress each others' expression (see the figure, part a).

This type of feedback naturally gives rise to multi-stability®***¢ and provides the cell with
the ability to make all-or-none fate decisions in response to external cues. The following
stochastic differential equations describe the expression levels of two transcription
factors {x, and x, ) that are interacting in this way:

x? kx?
dx, = ————— —b,x, + ;dW dx;= ————— —b,x, + 0,dW
3= 2 > sl et Xp= 2.2 22T O;
K+ x§+ kX3 Ky + kyxi + x3

In these equations k,. k, andk, are the (normalized) rate constants at which
transcription factors bind to promoters: K, and K, are (normalized) dissociation \ate
constants: b, and b, are (normalized) decay rate constants; o, and o, are constan
determining the amplitude of noise in the system; and W denotes a Weiner proc
(Brownian motion). In this simple illustrative case we have assumed that each
transcription factor binds cooperatively to its own promoter and to that of the other
transcription factor as a homodimer (which is why x is raised to the power of two). In
the absence of molecular noise (o,=0,=0) this model has many coexisting steady state
attractors (for appropriate parameter regimes). In the presence of molecular noise
(0,.0,>0). individual cells do not settle at a single attractor but instead stochastically
switch between distinct states at a rate that depends on the amplitude of molecular
noise. However. over
time the joint probability
density pix,.x) (thats. (:./—\,‘\)
the probability of finding v
a cell with expression
levels of (x,. x,)) settles to b1
astationary state. and a
robust distribution of cell
types is achieved. The
figure (part b) shows the
stationary probability
distribution fora
representative simulation
of this system: red hot
spots indicate preferred
genetic configurations at
which cells will
accumulate. and blue o :
indicates low probabdn:y 0 2 4 é 8 10 ”
configurations.
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MacArthur et.al Nat Rev Cell
Biology, 10, 673 (2009).

There are many potential outcomes of
reprogramming (iPS, piPS):

Stemness =
induced
common?

what do the diversity of
stem cells types have in

* pluripotency, gene regulation profiles.

* multi-stability (ability to change state in
esponse to environmental, viral cues).
this

that governs

factors activate their own
, mutually repress each other
(all-or-noth\ng response).

*  Weiner process (additive) =
stochasticity. At ¢ = 0, switch between
fate at rate r.



OK-SIM reprogramming amounts to “blind refactoring”:

* blind refactoring = systematically rewriting a program, but also affecting other
parts of the program without appropriate control.

* efficacy of OK-SIM approach: ranges from 0.0001% to 29%. 290,000-fold
difference! What causes this amount of variation?

A: rare pathways. Thousands of potential pathways (even in same culture), how
much does each pathway contribute to overall number of cells reprogrammed?
Some are common modes of action, others more itinerant.

Computational model of cellular identity:

* not possible to build a programming model (or even a mechanistic description) of
reprogramming process.

* next best thing: approximate the general architecture — transcription factors
added, results in a hierarchical regulatory cascade.



MacArthur et.al, PLoS One, 3(8), e3086.

Regulatory interactions among genes in
core pluripotency module:

* Oct4-Sox2 and Oct4-Sox2-NANOG
repress both Sox9 and PPAR-y (seen in
neural and bone cells, respectively).

* So0x9 and PPAR-y are co-repressive of
each other and Oct4, Sox2, NANOG.

Tip of the iceberg viewpoint:

* reprogramming is a critical process that is
triggered by the right state of this core
module.

What role does stochasticity play?
Oct4/Sox2 and NANOG vs. rest of
genome.



Many possible routes to Master control genes
cellular state, including govern discrete output
“rare” pathways (switch-like)

/0\ ‘/‘\q Genetic Network (protein expression)
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EScellstate  Pluripotent progenitor
COURTESY: Artyomov et.al PLoS Computational
Biology, 6(5), e1000785.

Cayley Tree model of
reprogramming  (described in
Artyomov et.al, 2010):

Gene modules (groups of genes that
work together) in a hierarchy.

* branches = cell state.

* nodes = state of epigenome, gene
expression level (gene module).

* active transcription (1), not active
transcription (0).

* for each trajectory, fraction of cells
reprogram (e.g. “rarity” of pathway).

Protein expression (gene network-
dependent) vs. gene availability
(epigenetic network-dependent).



Cellular Automata: discrete dynamical simulation.

Below: 2-D von Neumann

Cells have properties and interaction rules, behave in neighborhood, order 1
parallel.

Properties: internal state.
Interaction rules: if n > 2 neighbors are red, turn red.

Parallelism: all cells use same set of rules, have same
properties.

Example: Wolfram’s Rule 30 (1-D lattice)
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How to “recapitulate” morphogenesis:
Intrinsic noise = stochastic process in parallel = order. Change in development AND
evolution among hair pigment cells (see Pilkus et.al, Science, 332, 586-589 — 2011).

Wolfram’s 2-D rules: self-organized patterns (development), evolve in time

(evolution).

Way to understand population-level morphological changes: evolving CAs
(digital evo-devo). Couple with genetic algorithms.

" u

Evolving CAs:
evolution of
development (evo-
devo) approach.

How to model intercellular signaling:

secretion factors = leaderless proteins that
influence neighboring cells, involved in a host
of pathologies.

* colony formation is key component of self-
renewal maintenance (pluripotent cells), full
electrophysiologic maturity (neuronal cells).



Can be stochastic or
deterministic

Specifies response
function

Transient vs. longer-

lasting responses

Infect a population of automata

s

Proportion of automata
take up virus

s

Virus as trigger (initiates cascade),
changes automata genotype

(

Process of change unfolds over time.
Genotype “expressed” (slow Kinetics)

s

Derivative effects (differences over intervals).
Metastability, priming of phenotypic changes

Intercellular Functions

a) compare genotypes,
merge if expression level
common for Key genes.

a
b

b

e

-1,0

b) produce/exchange
leaderless proteins at
variable rate, effect on

synchronizing gene
expression.

How do we

understand

transformation given infection in a
cell population?

* as a conditional probability? As a
systems-level phenomenon?

How do we understand the action of intercellular

signaling (in this case secretory activity)?

* as nearest-neighbor influence (as opposed to

mass action Kkinetics)?




Infected fibroblasts
(not pluripotent)

piPS colony w/surrounding
differentiation

iPS colony

(single)

iPS colony
(multiplexed)

Crescent-shaped
proto-colony

Diverse Inputs:

* fibroblasts from different
tissue types, species.

eindividuality — some may be
better than others, worse than
others.

* different ambient conditions
(niche, growth conditions, etc).

Diverse Outputs:

* “4dealized” 1PS cells.

* piPS = partially pluripotent
cells.

* piPS cells with surrounding
differentiation (or carcinoma).



What are future directions for integrating models with biological data?

1) break biological processes down into computations (edge detection by cells).

2) use a time-course approach to find dynamic patterns during process, biological
control modeling of RNA.

3) data integration — gene expression, methylation, proteomics — are there coherent
patterns that can be exploited?

Decay off example
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Edge Detection Algorithm in E.coli l
Tabor et.al, Cell, 137, 1272-1281 (2009).




