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Q: What are “inducible” cells? 

 

 

 

 

 

 
 

A: Cells that can be transformed from one phenotype to another.  

iPS cells (pluripotent) 

Caiazzo, M. et.al Nature, 476, 224-227 (2011). Thomson Lab, University of Wisconsin 

iN cells (neuronal) 

COURTESY: Sigma-Aldrich 

Changes due to epigenetic, 

gene expression, and other 

factors. 

Modify cells for purposes of 

production, studying disease, or 

transplantation. Cartoon shows 

animal cells, but E.coli can also be 

used (e.g. synthetic biology). 



Q: What is biocomplexity? 

 

 

 

 

 

 

 

A: complexity of function and structure in living systems.  

Organs (cell populations) Organisms 

COURTESY: NSF, Wikipedia 

Non-reductionist approach, 

incorporates multiple mechanisms 

and levels of organization. 

Eukaryotic Cells 



Q: How do we “induce” animal cells to 

new phenotypes? 
 

A: Polycistronic viral vector (e.g. OK-

SIM, BAM) that encode transcription 

factors (for key trigger genes).  
 

 

Doxycyclene treatment: shuts down 

factors (result: GFP - colonies). 

Figure 1, Stadfeld, M. et.al, Cell Stem Cell, 2, 230-240, (2008). 

COURTESY: Stem Cell School (http://stemcellschool.com/) 



COURTESY: Stem Cell School (http://stemcellschool.com/) 

Retroviral vector (delivered via transgene) integrates into 

genome of  “infected” cells. Occurs in only a fraction of 

exposed cells. 

Induces differential gene expression, leads to changes in 

mRNA concentrations, protein production, cell 

phenotype. 

Colonies form among cells with the new “pluripotent” 

phenotype, (aggregation of pluripotent cells). 

mRNA 

“Four factor” approach of Yamanaka (2007). 



Dynamic transformation: Observing the change in a cellular phenotype over time 

(direct) and/or across diversity (indirect). 

Cellular transformation “surface” 
transformation given a specific gene (g), stimulus (s), and phenotypic outcome (p)?  

Neutral,  

deterministic 

Selective,  

deterministic 
Selective,  

stochastic 

Neutral,  

stochastic 

Adapted from Yamanaka (2009), Hanna et.al (2009). 

CONVENTIONAL VIEW: state as a specific, predetermined (a priori) phenotype and biochemical 

indicators. 

 

NEW VIEW: transformation is a position on a “surface”, governed by 3 parameters. Decomposed 

using experiment, computation. 

{g1, s1, p1} 

{g2, s2, p2} 

{g3, s3, p3} 

{g4, s4, p4} 

{g5, s5, p5} 



Figure 1, Furusawa and Kaneko, Biology Direct, 4: 17 (2009). 

Attractor basin approach: 

 

* pluripotent phenotypes are in 

“metastable states” (can be nudged into 

multiple attractor basins given stimulus). 

 

 

* differentiated phenotypes can be in 

attractor basins, or can be metastable 

themselves. 

 

 

* consistent with Waddington’s model of 

developmental canalization (specific 

pathways for differentiation). 

 

 

* cells choose a specific “path” to and 

from different cellular states. 



Energy landscape used to characterized transitional and end states during 

reprogramming.  

 

 

*  left: navigation along minima during process (characterize molecular changes). 

 

* right: stable states = minima and maxima. Characterize cells in relation to 

differentiated and stem-like cell type. 



Three components to the stochastic model of reprogramming (presented in 

Hanna et.al, 2009): 
 

1) basic assumption: given N cells, one-step reprogramming process occurs with 

constant cell-intrinsic rate k. “Popcorn” metaphor. 

 

 
 
 

 

 

 

 

 

 

2) latency: interval tp defined as time between tn (when first cell in population N is 

reprogrammed) and tn+1 when daughter cells grow to reach detection threshold. 

From “first settler” to viable colony. 
 
 

3) scaling: at any tn, population of cells in a well, N(t), scales at rate which first 

reprogramming event takes place (determines slope). Cumulative PDF: 

 

 



Competing models for reprogramming 

(stochastic vs. deterministic): 
 

 

1) stochastic: transformation occurs 

according to a variable latency. 
 

* time from trigger to transformation is 

variable (cell cycle c = m transformations). 
 

 

2) deterministic: transformation occurs 

according to a uniform latency. 
 

*  time from trigger to transformation is 

uniform. 
 

 

Elite models argue that only a subset 

(1/n) of cells will reprogram (innate 

ability).  
 

* elite model is independent of stochasticity 

vs. uniformity (independent mechanisms?) 



Example of scaling (more instances of transformation with more cells):  

 
 

 N = 103       time to reach > 90% reprogrammed cells in well longer. 
 

 N = 106          time to reach > 90% reprogrammed cells in well shorter. 



Simplest scenario (for stochastic reprogramming): 
 
* one-step rate-limiting transition characterized by a cell-intrinsic rate, which does 
not describe reprogramming behavior before and soon after transgene induction. 
 
* perhaps there are multiple modes of reprogramming acceleration. 
 

 
Arrive at this model by considering: 
 
1) closely monitoring transgene induction, 2) plating efficiency, 3) cell 
proliferation, 4) changes in population size across experiment. 
 
 
There is a yet-to-be-defined rate-limiting, continuous stochastic mechanism 
(according to model): 
 
*    function of cell division before fully reprogrammed state is attained. 
 

* results support “all with variable latency” model (neither “elite” nor 
“deterministic”). 
 

*  might iPS cells arise preferentially from a precursor (progenitor or adult SC)? 



Example: MacArthur et.al, PLoS One, 3(8), e3086. 
 

Computational approaches to gene expression include 

adding noise (stochastic element) to model. 

 
* non-specific noise in expression of four factors, other genes can trigger 

reprogramming. 

 
 

Black function: Oct4, Sox2. Blue function: NANOG.  Red function: 

lineage-specific master genes, σ: parameter value for amplitude of noise 

(same for every gene). 

Hypothesis: Cellular reprogramming can be driven by noise. 

*  noise in the form of transcriptional variance and other 

stochastic processes can trigger, drive reprogramming process in 

vitro.   

 

*  presence of Oct4, Sox2, and NANOG suppress differentiation 

genes and activate stem cell genes (modules). 



There are many potential outcomes of 

reprogramming (iPS, piPS): 
 

 

Stemness = what do the diversity of 

induced stem cells types have in 

common?  
 

* pluripotency, gene regulation profiles. 
 

* multi-stability (ability to change state in 

response to environmental, viral cues). 
 
 

Switch that governs this 

transformation may be stochastic: 
 

* Two factors activate their own 

expression, mutually repress each other 

(all-or-nothing response). 
 

* Weiner process (additive) = 

stochasticity. At σ = 0, switch between 

fate at rate r.  MacArthur et.al Nat Rev Cell  

Biology, 10, 673 (2009). 



OK-SIM reprogramming amounts to “blind refactoring”: 

 

* blind refactoring = systematically rewriting a program, but also affecting other 
parts of the program without appropriate control. 

 
* efficacy of OK-SIM approach: ranges from 0.0001% to 29%. 290,000-fold 

difference! What causes this amount of variation? 
 

 

 

A: rare pathways. Thousands of potential pathways (even in same culture), how 
much does each pathway contribute to overall number of cells reprogrammed? 

Some are common modes of action, others more itinerant.  
 

 

 

Computational model of cellular identity: 

 

* not possible to build a programming model (or even a mechanistic description) of 
reprogramming process. 

 
* next best thing: approximate the general architecture – transcription factors 

added, results in a hierarchical regulatory cascade. 



Regulatory interactions among genes in 

core pluripotency module:  

 

 

* Oct4-Sox2 and Oct4-Sox2-NANOG 

repress both Sox9 and PPAR-γ (seen in 

neural and bone cells, respectively). 

 

* Sox9 and PPAR-γ are co-repressive of 

each other and Oct4, Sox2, NANOG. 

 

 

Tip of the iceberg viewpoint:  

 

* reprogramming is a critical process that is 

triggered by the right state of this core 

module. 

 

What role does stochasticity play? 

Oct4/Sox2 and NANOG vs. rest of 

genome. 



Cayley Tree model of 

reprogramming (described in 

Artyomov et.al, 2010): 

 

Gene modules (groups of genes that 

work together) in a hierarchy. 
 

 

* branches = cell state. 
 

* nodes = state of epigenome, gene 

expression level (gene module).  
 

* active transcription (1), not active 

transcription (0). 
 

* for each trajectory, fraction of cells 

reprogram (e.g. “rarity” of pathway). 
 

 

Protein expression (gene network-

dependent) vs. gene availability 

(epigenetic network-dependent).  

Master control genes 

govern discrete output 

(switch-like)  

COURTESY: Artyomov et.al PLoS Computational 

Biology, 6(5), e1000785. 

Many possible routes to 

cellular state, including  

“rare” pathways 



Cellular Automata: discrete dynamical simulation. 

 

Cells have properties and interaction rules, behave in 

parallel. 

Properties: internal state. 
 

Interaction rules: if n > 2 neighbors are red, turn red.  
 

Parallelism: all cells use same set of rules, have same 

properties. 

current pattern 111 110 101 100 011 010 001 000 

new state for 

center cell 
0 0 0 1 1 1 1 0 

Example: Wolfram’s Rule 30 (1-D lattice) 

Rule 30 - model Rule 30 - nature 

1 2 3 4 5 6 7 8 

Below: 2-D von Neumann  
neighborhood, order 1 



How to “recapitulate” morphogenesis: 

Intrinsic noise = stochastic process in parallel = order. Change in development AND 

evolution among hair pigment cells (see Pilkus et.al, Science, 332, 586-589 – 2011). 
 

 

Wolfram’s 2-D rules: self-organized patterns (development), evolve in time 

(evolution). 
 

 

Way to understand population-level morphological changes: evolving CAs 

(digital evo-devo). Couple with genetic algorithms. 

Evolving CAs: 

evolution of 

development (evo-

devo) approach. 

How to model intercellular signaling: 

 

•secretion factors = leaderless proteins that 

influence neighboring cells, involved in a host 

of pathologies.  

 

 

* colony formation is key component of self-

renewal maintenance (pluripotent cells), full 

electrophysiologic maturity (neuronal cells).   



How do we understand 

transformation given infection in a 

cell population? 
 

 

 

* as a conditional probability? As a 

systems-level phenomenon? 

How do we understand the action of intercellular 

signaling (in this case secretory activity)? 
 

 

 

 

* as nearest-neighbor influence (as opposed to 

mass action kinetics)? 



Diverse Outputs: 
 

* “idealized” iPS cells. 

 

* piPS = partially pluripotent 

cells. 

 

* piPS cells with surrounding 

differentiation (or carcinoma). 

Diverse Inputs: 
 

* fibroblasts from different 

tissue types, species. 

 

•individuality – some may be 

better than others, worse than 

others. 

 

* different ambient conditions 

(niche, growth conditions, etc). 



Edge Detection Algorithm in E.coli 

Tabor et.al, Cell, 137, 1272-1281 (2009). 

What are future directions for integrating models with biological data? 

 

1) break biological processes down into computations (edge detection by cells). 

 

 

2) use a time-course approach to find dynamic patterns during process, biological 

control modeling of RNA. 

 

 

3) data integration – gene expression, methylation, proteomics – are there coherent 

patterns that can be exploited? 

1 
2 


