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Since their inception at `Macy conferences’ in later 1940s  complex systems remain the 
most controversial topic of inter-disciplinary sciences. The term `complex system' is the 
most vague and liberally used scientific term. Using elementary cellular automata (ECA), 
and exploiting the CA classification, we demonstrate elusiveness of `complexity' by 
shifting space-time dynamics of the automata from simple to complex by enriching cells 
with `memory’. This way, we can transform any ECA class to another ECA class -- 
without changing skeleton of cell-state transition function --- and vice versa by just 
selecting a right kind of memory. A systematic analysis display that memory helps 
`discover' hidden information and behaviour on trivial -- uniform, periodic, and non-trivial 
-- chaotic, complex -- dynamical systems.

Motivation



Nature vs Complex Systems 
we have two interesting point of view ...

1992

2002

both theories relate the 
cellular automata theory



Cellular automata
Cellular automata (CA) are discrete dynamical systems evolving on an 
infinite regular lattice.

!
A CA is a 4-tuple A = <Σ, µ, φ, c0> evolving in d-dimensional lattice, where 
d ∈ Z+. Such that:

 

  Σ represents the finite alphabet

µ is the local connection, where, µ = {x0,1,...,n-1:d | x ∈ Σ}, therefore, µ is a 
neighbourhood

  φ is the local function, such that, φ : Σµ → Σ

  c0 is the initial condition, such that, c0 ∈ ΣZ

  

Also, the local function induces a global transition between configurations:


ϕφ : ΣZ → ΣZ.




Elemental CA (ECA) is defined as follows:

!
Σ = {0,1}

µ = (x+1,x0,x-1) such that x ∈ Σ

φ : Σ3 → Σ

µ = {c0 | x ∈ Σ} the initial condition is the

       first ring with t = 0

CA dynamics in one dimension



Wolfram defines his classification in simple rules [Wolfram, 1986], known as 
ECA. Also, this classification is extended to any dimension.

!
A CA is class I, if there is a stable state xi ∈ Σ, such that all finite 
configurations evolve to the homogeneous configuration.

A CA is class II, if there is a stable state xi ∈ Σ, such that any finite 
configuration become periodic.

A CA is class III, if there is a stable state, such that for some pair of finite 
configurations ci and cj with the stable state, is decidable if ci evolve to cj, 
such that any configuration become chaotic.

Class IV includes all previous CA, also called complex. [Culik II & Yu, 1988]

!
!
Stephen Wolfram, Cellular Automata and Complexity, Addison-Wesley Publishing Company, 1994.

Karel Culik II and Sheng Yu, ”Undecidability of CA Classification Schemes,” Complex Systems 2, 177-190, 1988.

Wolfram classes in CA



CA classes in one dimension

class I: uniform class II: periodic

class III: chaotic class IV: complex



Mean field theory [Gutowitz, 1984] is a proven technique for discovering statistical 
properties of CA without analyzing evolution spaces of individual rules. In this way, it 
was proposed to explain Wolfram's classes by probability theory, resulting in a 
classification based on mean field theory curve [McIntosh, 1990]:
!
class I: monotonic, entirely on one side of diagonal;

class II: horizontal tangency, never reaches diagonal;

class IV: horizontal plus diagonal tangency, no crossing; 
class III: no tangencies, curve crosses diagonal.
!
Thus for one dimension we have:
!
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!
such that j is a number of relations from their neighbourhoods and X the 
combination of cells xi-r,...,xi,...,xi+r. n represents the number of cells in 
neighbourhood, v indicates how often state one occurs in Moore's neighbourhood, 
n-v shows how often state zero occurs in the neighbourhood, pt is a probability of 
cell being in state one, qt is a probability of cell being in state zero (therefore q=1-p).

!
Howard A. Gutowitz, “Mean Field vs. Wolfram Classification of Cellular Automata,” http://tuvalu.santafe.edu/
~hag/mfw/mfw.html, 1989.

Harold V. McIntosh, ”Wolfram's Class IV and a Good Life,” Physica D 45, 105-121, 1990.

Mean field approximation: fixed points



Field of basin attractors: cycles

Generally a basin could classifier CA with chaotic or complex behavior 
following also previous results on attractors [Wuensche, 1992-99].

!
class I: very short transients, mainly point attractors (but possibly also point 
attractors) (very ordered dynamics) very high in-degree, very high leaf density 
(ordered dynamics);

class II: very short transients, mainly short periodic attractors (but also point 
attractors), high in-degree, very high leaf density;

class III: very long transients, very long periodic attractors low in-degree, low 
leaf density (chaotic dynamics);

class IV: moderate transients, moderate length periodic attractors moderate 
in-degree, moderate very leaf density (possibly complex dynamics).

!
!
Andrew Wuensche, “Classifying Cellular Automata Automatically,” Complexity 4(3), 47-66, 1999.

Harold V. McIntosh, ”Ancestors: Commentaries on The Global Dynamics of Cellular Automata by Andrew 
Wuensche and Mike Lesser (Addison-Wesley, 1992),” Workpaper, Universidad Autónoma de Puebla, Puebla, México, 
1993.



Conventional CA are ahistoric (memoryless): i.e., the new state of a cell 
depends on the neighbourhood configuration solely at the preceding time step 
of φ. CA with memory can be considered as an extension of the standard 
framework of CA where every cell xi is allowed to remember some period of its 
previous evolution [Alonso-Sanz, 2009].

!
Thus to implement a memory we design a memory function Φ, as follow:

!

Φ(xt-τi, ... , xt-1i, xti) → si
!
such that τ < t determines the degree of memory backwards and each cell si ∈ 
Σ being a state function of the series of states of the cell xi with memory up to 
time-step. Finally to execute the evolution we apply the original rule as follows:

!

φ(..., sti-1, sti, sti+1, ...) → xt+1i.
!
Thus in CA with memory, while the mapping φ remains unaltered, historic 
memory of all past iterations is retained by featuring each cell as a summary of 
its past states from Φ. Therefore cells canalize memory to the map φ.

!
Ramon Alonso-Sanz, Cellular Automata with Memory, Old City Publishing, 2009.

Elemental cellular automata with memory



Elemental cellular automata with memory
Firstly we should consider a kind of memory, in this case the majority 
memory Φmaj and then a value for τ. This value represent the number 
of cells backward to consider in the memory. Therefore a way to 
represent functions with memory and one ECA associated is 
proposed as follow:

!

ΦCAm:τ
!
such that CA represents the decimal notation of an specific ECA and 
m a kind of memory given. This way the majority memory working in 
ECA rule 126 checking tree cells on its history is denoted simply as 
ΦR126maj:3.
!
Implementing the majority memory Φmaj we can select some ECA and 
experimentally look what is the effect.

!
!
Ramon Alonso-Sanz, Cellular Automata with Memory, World Scientific Series on Nonlinear Science, Series A, 
2011.



conventional 
CA evolution

historic 
CA evolution

MEMORY: depend on the state and history of the system

Elementary Cellular Automata (ECA ahistoric) 
Elementary Cellular Automata with Memory (ECAM historic)



We have demonstrated that: chaotic ECAM rule 30 has complex dynamics



We have demonstrated that: chaotic ECAM rule 126 has complex dynamics



We have demonstrated that: chaotic ECAM rule 101 has complex dynamics



ECA Rule 30 and Rule 126

Two cases of study



Chaotic ECA rule 30: evolution space

one cell in state 1 random initial condition 50%



Chaotic ECA rule 126: evolution space

one cell in state 1 random initial condition 50%



Field of basin attractors: ECA rule 126

class III: very long transients, very long periodic attractors low in-degree, low leaf density (chaotic dynamics).



Field of basin attractors: ECA rule 30

main attractor zoom out
H. V. McIntosh, NXLCAU systems, http://delta.cs.cinvestav.mx/~mcintosh/oldweb/software.html

http://delta.cs.cinvestav.mx/~mcintosh/oldweb/software.html


Field of basin attractors: ECA rule 30

final zoom out



Expanding the 
ECA universe 
to new rules!
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A. Wuensche & M. Lesser (1992) The Global Dynamics of Cellular Automata, Addison-Wesley Publishing.



Cluster of equivalents rules for ECA rule 126 
including memory function

�R126 �R129

�majR129:4�majR126:4

ECA

with memory

R126maj:4 R129maj:4



ECA rule 126 with majority memory

� = 3 � = 4 � = 5
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original



ECA Rule 30 
ahistoric (conventional) evolution

Genaro J. Martínez, Andrew Adamatzky, Ramon Alonso-Sanz, and Juan C. Seck-Tuoh-Mora, “Complex dynamics 
emerging in Rule 30 with majority memory”, Complex Systems 18(3), 345-365, 2010.

ECA Rule 30 with memory (ECAM)

ECAM ΦR30maj:12

ECAM ΦR30maj:8



ECA rule 126 with memory (ECAM)

ECA Rule 126 
ahistoric (conventional) evolution ECAM ΦR126maj:4

Genaro J. Martínez, Andrew Adamatzky, Juan C. Seck-Tuoh-Mora, and Ramon Alonso-Sanz, “How to make dull cellular 
automata complex by adding memory: Rule 126 case study”, Complexity 15(6), 34-49, 2010.



starting with a single cell 
in state 1



CA classification

The main interest of chaotic rules relate to developing cryptography, random number 
generators, and fields of attraction. However, the so called class IV or complex rules have 
captured most attention given their potential for computational universality, and their 
applications in artificial life by the simulations of particles, waves, mobile self-localizations, or 
gliders. Their capacity to contain intrinsically complex systems. This kind of discrepancy 
between chaotic rules, and complex rules capable of computational universality, are 
discussed in the CA literature.

Genaro J. Martínez, “A Note on Elementary Cellular Automata Classification”, Journal of Cellular Automata 
8(3-4), 233-259, 2013.



CA classification with memory



CA classification with memory



New complex ECAM evolution rules with memory



New complex ECAM evolution rules with memory



New complex ECAM evolution rules with memory



The 2D PARITY rule with Memory. Moore N. [17]

Alonso-Sanz,R.,Martin,M.(2002). Cellular Automata with Memory: patterns starting with a single site seed. IJMPC ,13,1.

Of course, we can select memory function in 2D, 3D, etc. (slide thanks to Alonso-Sanz, 2012)



A novel of cellular automata evolution rules emerge 
selecting a kind of memory. So, these set of rules as 
conventional cellular automata can find potential 
applications in: 
!
• unconventional computation 
• physics (solitons, particle collisions) 
• mathematics 
• biological phenomena 
• chemical reactions 
• reaction-diffusion systems 
• simulation of populations, societies, and virus 
• complex systems, artificial life, chaos, and fractals



We can conclude that information on some dynamical system can be 
found on any class, selecting a kind of memory for discover it.


Selecting different kinds of memories for a specific CA, we can proof 
experimentally that its behaviour can change to any other possible 
class including itself. This way, determines if a CA belong to a 
respective class or not, match with another previous results founded 
for other researchers. Such that, CA classification is a undecidable 
problem.

Conclusions



Thank you very much for you kind attention! 
questions? 
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