Embryo Physics - EVO DEVO January 15, 2014

Stephen M. Levin, MD Ezekiel Biomechanics Group McLain, Va

The spine is like a 25-story skyscraper. Like a skyscraper, the spine is vertical, strong and stable. It is also responsible for supporting the trunk and limbs.

The Paradigm

The Spine is a Column

"The spine is like a 25-story skyscraper.

Like a skyscraper, the spine is vertical, strong and stable.

It is also responsible for supporting the trunk and limbs."

Albert Schultz

The spine is like a 25-story skyscraper. Like a skyscraper, the spine is vertical, strong and stable. It is also responsible for supporting the trunk and limbs.

The Paradigm The Spine is a Column

"The spine is like a 25-story skyscraper.

Like a skyscraper, the spine is vertical, strong and stable.

Albert Schultz

It is also responsible for supporting the trunk and limbs."

<u>Based on this Model:</u> 500,000 Spine Fusions/year @ \$110,000+ each

Cost:\$55 Billion/Year!

Math Model for the Human Body

Calculation of Vertebral Strengths

Challenging the Paradigm

/ertebrae	Percentage of Body Weight Carried	Mass in kg Carried by 72.7 kg Man	Breaking Strength (N)	Breaking Stress in g's'	Percentage of L4 Breaking Strength
T1	9	6.5	1,605	25.0	16.6
T2	12	8.7	2,140	25.0	22.1
T3	15	10.9	2,675	25.0	27.7
T4	18	13.1	3,211	25.0	33.2
T5	21*	15.2	3,746	25.0	38.7
T6	25*	18.1	4,459	25.0	46.1
17	29*	21.0	5,173	25.0	53.5
TB	33*	23.9	5,864"	24.9	60.7
T9	37*	26.9	6,657*	25.2	68.9
T10	40*	29.1	7.277*	25.5	753
T11	44*	32.0	7.580*	24.2	78.4
T12	47*	34.2	7.835*	23.4	81.0
L1	50*	36.4	7,982*	22.4	82.6
L2	53*	38.5	8.584*	22.7	88.8
L3	56*	40.7	9.636	24.1	99.6
L4	58*	42.2	9,667*	23.4	100.0
L5	60*	43.6	10,550*	24.6	109.1

Calculated: 36,000N

Fig. 2.1 A load of 200 kg located 40 cm from the fulcrum requires a muscle reaction force of 8 • 200 = 1600 kg. The erectores spinae group can generate a force of about 200 to 400 kg, a force of only one quarter to one half of that necessary. Hence, muscle power alone cannot lift such a load. Another supporting member is required.

Calculated Loads Will:

Tear Muscle Crush Bone

The erector spianegroup can generate a force of about 200 to 400kg, a force of only one quarter to one half of what is necessary.

Giovanni Borelli (1608-1679)

THE LEVER 2-Bar OPEN KINEMATIC CHAIN

©smlevin 2013

CHARACTERISTICS OF LEVER BASED SYSTEMS

Linear

Local

Structurally Discontinuous

Gravity Dependent

Unidirectional

High Energy Requirement

Rigid Joints for Stability

CHARACTERISTICS OF BIOLOGICAL Systems **NonLinear** Global **Structurally Continuous Gravity Independent** Omnidirectional Low Energy Requirement **Stable with Flexible Joints**

Biology is All About Structure Organic Chemistry is Structural H Benzene Ring 1885 н August Kekulé Thymine Adenine 1953 5' end 3' end Phosphatedeoxyribose backbone

Cytosine

5' end

3' end

Guanine

The tensegrity triangles are made up of three DNA helices

9

Is there a structural system that is consistent with evolution?

Homologous Structures

Structurally Related

Evolution of Structure

SELF ORGANIZING

Hierarchical structural continuum Stable with Flexible Joints Omnidirectional

Energy Efficient

CONSTRUCTION RULES: How to Build an Organism

Triangulation/Truss

Closest Packing

DETERMINISTIC

Obedience to set rules of structure

Sunday, December 11, 2011

Octa

Dodeca

lcosa

Of the Trusses, The Icosahedron is the Most Suitable Because:

Tie

Largest Volume for Surface Area **Close Packing SISIS** Exo/Endo Skeletal **Omni Directional** Hierarchical **Tensegrity** Nonlinear

Icosahedron

Strut

Tensegrity Icosahedron (Tension Integrity)

ExoSkeleton

EndoSkeleton

CONTINUOUS TENSION -Tie Discontinuous compression

"Floating Compression" Snelson

Regular Geodesic Two-Frequency Icosabedron

Regular Geodesic Four-Frequency Icosahedron

Regular Geodesic Nine-Frequency Icosahedron

Closest Packing

163

FIGURE 1 HIERARCHICAL CLOSE-PACKING --CIRCLES TO HEXAGONS HEXAGONAL BALANCE OF INTRINSIC AND EXTRINSIC FORCES

-

3-D Close Packing

800 million yo cells I0µ Tetrahedral

net spikeroidal prokazyote; it was found in Utah shales lina years and. The cluster of calls shown in two views at

850 million years old. The cells are only 10 micrometers across, but il fetrahedral arrangement suggests they formed as a result of mitroin

700 million yo fossilized Cell Colony

Radiolaria

Dandelion

Rice DwarfVirus

Polio Virus

Raspberry

Radiolaria

Pufferfish

Pyruvate dehydrogenase

Tyco Supernova

Volvox

Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine

Jacqueline L.S. Mine, Dan Shi, Peter B. Rosenthal, Joshua S. Sunshine, Gonzalo J. Domingo, Xiongwu Wu, Bernard R. Brooks, Richard N. Perham, Richard Henderson and Sriram Subramaniam

The EMBO Journal (2002) 21, 5587 - 5598 |doi:10.1093/embc//ott574

+ Previous figure

Figures and Tables

RBC

Sung

The tensegrity triangles self-assemble to form 3D lattices

The tensegrity triangles are made up of three DNA helices

©smlevin 2013

+ Back to article

Next figure +

C Nature

© Nature

properties of tensegrity icosahedron

SELF ORGANIZING

- Hierarchical
- structural continuum

Stable with Flexible Joints

Omnidirectional

Energy Efficient

Denser and Stronger

____Energy Efficient

STRAIN

"(Non Linearity) is an essential requirement for the existence of life as ^{Hookean} we know it" J.E. Gordon

Mechanical Characteristics

Stress/Strain Stress Distribution Structural Distrib Gravity Stability Energy Costs Joints

LEVER Systems Linear Local Discontinuous Dependent Unidirectional High Rigid

32

BIOLOGIC **Systems** NonLinear Global Continuous Independent **Omnidirectional** Low **Flexible**

TENSEGRITY Systems NonLinear Global Continuous Independent **Omnidirectional** Low **Flexible**

COLLOIDS EMULSIONS

Cartilage

Bone

Fat Cells

2-day Embryo

Frogs Eggs

2-day Embryo

* Only Three films ever meet to form the edge of a bubble

* Any Two adjacent films always meet at an angle of 120⁰

*Exactly Four Edges ever come together to meet at a point

S

t

r

e

S

S

FOAMS

COLLOIDS & EMULSIONS

***Spacial Interaction is important**

(Mesoscopic Organization-you can't judge a foam by one bubble)

***The systems are in non-equilibrium**

***The systems are nonlinear**

* Foster Emergent Properties

THIXOTROPIC Dilatant SHEAR THINNING SHear Thickening (Jacketing) Kelvin BINGHAM JAMMPNG

Comparison of non-Newtonian, Newtonian, and viscoelastic properties

Viscoelastic Apparent viscosity decreases with duration of stress ^[2] Yogurt, xanthan gum solutions, aqueous iron oxide gels, gelatin gels, pectin gels, synovial fluid, hydrogenated castor oil, some clays (including bentonite, and montmorillonite), carbon black suspension in molten tire rubber, some drilling muc many paints, many floc suspensions, many colloidal suspensions Time- independent viscosity Shear thinning (pseudoplastic) Apparent viscosity decreases with increased stress ^[3] Suspensions of corn starch in water, sand in water, Silly Putty Nail polish, whipped cream, ketchup, molasses, syrups, paper pulp in water, lates paint, ice, blood, some silicone oils, some silicone coatings Newtonian fluids Viscosity is constant fluids Stress depends on normal and shear strain rates and also the pressure applied Blood plasma, custard, water		Kelvin material	"Parallel" linearstic combination of elastic and viscous effects ^[1]	Some lubricants, whipped cream
Shear thickening (dilatant) Apparent viscosity increases with increased stress ^[3] Suspensions of corn starch in water, sand in water, Silly Putty Time- independent viscosity Apparent viscosity decreases with increased stress ^{[4][5]} Nail polish, whipped cream, ketchup, molasses, syrups, paper pulp in water, later paint, ice, blood, some silicone oils, some silicone coatings Generalized Newtonian fluids Viscosity is constant Stress depends on normal and shear strain rates and also the pressure applied Blood plasma, custard, water	Viscoelastic	Thixotropic	Apparent viscosity decreases with duration of stress ^[2]	Yogurt, xanthan gum solutions, aqueous iron oxide gels, gelatin gels, pectin gels, synovial fluid, hydrogenated castor oil, some clays (including bentonite, and montmorillonite), carbon black suspension in molten tire rubber, some drilling muds, many paints, many floc suspensions, many colloidal suspensions
Time-independent viscosity Apparent viscosity Apparent viscosity Nail polish, whipped cream, ketchup, molasses, syrups, paper pulp in water, latest paint, ice, blood, some silicone oils, some silicone coatings Time-independent viscosity Viscosity is constant Stress depends on normal and shear strain rates and also the pressure applied Nail polish, whipped cream, ketchup, molasses, syrups, paper pulp in water, latest paint, ice, blood, some silicone oils, some silicone coatings		Shear thickening (dilatant)	Apparent viscosity increases with increased stress ^[3]	Suspensions of corn starch in water, sand in water, Silly Putty
Viscosity Generalized Newtonian fluids Viscosity is constant Stress depends on normal and shear strain rates and also the pressure applied Blood plasma, custard, water	Time-	Shear thinning (pseudoplastic)	Apparent viscosity decreases with increased stress ^{[4][5]}	Nail polish, whipped cream, ketchup, molasses, syrups, paper pulp in water, latex paint, ice, blood, some silicone oils, some silicone coatings
on it	viscosity	Generalized Newtonian fluids	Viscosity is constant Stress depends on normal and shear strain rates and also the pressure applied on it	Blood plasma, custard, water

Shear Stress (T)

Symmetry Breaking Not Everything is Round

carbon nanotube memory element in NanoHive-1

icospiral

Self"Generating

0:01/0:22

Bowl-shaped sheets of carbon (a) may grow around to their edge and form a fullerene, or bypass the edge to form a nautilus shaped "icospiral" (d). Kroto

(Curl, Smalley, Kroto 1985)

60

Mystery Carbon

gazine of Science

SCENER ENDS ARRAY 28. 1 Viel. 125. No. 4 Paper 43-64

The Weekly N

Floating Compression

Icospiral - Kroto

Nanotubule

Logarithmic Spiral

Collagen

Virus

Icosahedral Water

21/ 42

(#)

(b)

Pollen 10-25 µm

RBC 8 µm

Leucocyte 7-9 µm

20µm_{Sea Urchin Egg}

Diatom 10-150 µm

700million YO Eukariote Cells 30 µm

Volvox 250-500µm

Fly Eye

Atoxyl Egg

50

Angel Fish Ovary

his image of an anglerfish many (from the order Leptills men) was realed in by James Rayther at The Wistar Institute, a consent? or research organization in Philadelphia. He captured it at its magnification on a two-channel autoficerescence scope.

ECM (Langevin)

54

	3	Π
Π	3	П
	}	
	£	

Myofascial connections

Fig. 1. A schematic representation of myofasoral pathway muscle (\mathcal{O}) Within a constant month

THE FRACTAL NUCLEUS

A CONTINUOUS STRUCTURE

Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Lieberman-Aiden E, et al. Science. 2009 Oct 9;326(5950):289-93.

Independent of Scale

Tensegrity Described in:

Lung Liver Eye Intestine Heart Nerve Kidney Brain Muscle Thyroid Bone Skin Nose Fascia

Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton Donald E. Ingber* Journal of Cell Science 104, 613-627 (1993) Stephen Levin 1981 Donald Ingber 1985

2014 6,000 Articles Tensegrity, Biology

THE SRANGE ATTRACTOR

FRACTAL GENERATOR

Exo/Endo-Skeletal

Regular Geodesie Two-Frequency Icosabedron

Regular Geodesic Four-Frequency Icosahedron

Regular Geodesic Nine-Frequency fcosabedran

Levin, SM.**The** Primordial Structure

34th Meeting of TheInternational Society for theSystems Sciences.pp 716-7201990, Portland

Thank you !

Stephen M. Levin, MD Ezekiel Biomechanics Group McLean, Virginia 22102

smlevin@biotensegrity.com
www.biotensegrity.com